Nauki Ścisłe i Nauki o Ziemi

Polish Polar Research


Polish Polar Research | 2007 | vol. 28 | No 2 |


The Bravaisberget Formation in Spitsbergen embraces an organic carbon-rich, clastic sequence that reflects a general shallow shelf development of the Middle Triassic depositional system in Svalbard . New observations and measurements of the type section of the formation at Bravaisberget in western Nathorst Land allow to present detailed lithostratigraphical subdivision of the formation, and aid to reconstruct its depositional history. The subdivision of the formation ( 209 m thick at type section) into the Passhatten, Somovbreen, and Van Keulenfjorden members is sustained after Mørk et al. (1999), though with new position of the boundary between the Passhatten and Somovbreen mbs. The Passhatten Mb is defined to embrace the black shale-dominated sequence that forms the lower and middle parts of the formation ( 160 m thick). The Somovbreen Mb ( 20 m thick) is confined to the overlying, calcite-cemented sequence of marine sandstones. The Van Keulenfjorden Mb ( 29 m thick) forms the topmost part of the formation composed of siliceous and dolomitic sandstones. The formation is subdivided into twelve informal units, out of which eight is defined in the Passhatten Mb (units 1 to 8), two in the Somovbreen Mb (units 9 and 10), and also two in the Van Keulenfjorden Mb (units 11 and 12). Units 1, 3, 5, 7 and 9 contain noticeable to abundant phosphorite, and are interspaced by four black shale sequences (units 2, 4, 6, and 8). Unit 9 passes upwards gradually into the main sandstone sequence (unit 10) of the Somovbreen Mb. The base of the Van Keulenfjorden Mb is a discontinuity surface covered by thin phosphorite lag. The Van Keulenfjorden Mb consists of two superimposed sandstone units (units 11 and 12) that form indistinct coarsening-upward sequences. The Bravaisberget Fm records two consequent transgressive pulses that introduced high biological productivity conditions to the shelf basin. The Passhatten Mb shows pronounced repetition of sediment types resulting from interplay between organic-prone, fine-grained environments, and clastic bar environments that focused phosphogenesis. The lower part of the member (units 1 to 5) contains well-developed bar top sequences with abundant nodular phosphorite, which are under- and overlain by the bar side sequences grading into silt- to mud-shale. The upper part of the member (units 6 to 8) is dominated by mud-shale, showing the bar top to side sequence with recurrent phosphatic grainstones in its middle part. Maximum stagnation and deep-water conditions occurred during deposition of the topmost shale sequence (unit 8). Rapid shallowing trend terminated organic-rich environments of the Passhatten Mb, and was associated with enhanced phosphogenesis at base of the Somovbreen Mb (unit 9). Bioturbated sandstones of the Somovbreen Mb (unit 10) record progradation of shallow-marine clastic environments. The sequence of the Van Keulenfjorden Mb (units 11 and 12) was deposited in brackish environments reflecting closure of the Middle Triassic basin in western Svalbard .

Przejdź do artykułu

Autorzy i Afiliacje

Krzysztof P. Krajewski
Przemysław Karcz
Ewa Woźny
Alte Mørk


This paper describes the weather conditions on the NE coast of Sørkappland (South Spitsbergen) during August 2005, and considers them in the context of the general synoptic situation over the North Atlantic . A comparison of local climates features for the East and West coast of southern Spitsbergen shows that the general atmospheric circulation and direct solar radiation in summer are the decisive factors affecting weather on the East coast. Foehn effects were observed during the study period. In the East, these were triggered by the westerly cyclonic situation and, in the West, by the easterly. The differences in the intensity of foehn effects may be explained by a specific relief of the Sørkappland peninsula.

Przejdź do artykułu

Autorzy i Afiliacje

Wojciech Maciejowski
Adam Michniewski


The general objective of this research has been to identify the factors and conditions of migration of CaCO3 within glaciers and their marginal zones in Svalbard . Special attention has been paid to the cryochemical processes responsible for precipitation of calcium carbonate in icing (naled ice) formed near fronts of polythermal glaciers during winter. Estimates of the importance of those processes in respect of the general mineral mass transfer in the glacier system are attempted here. Field studies concerning the carbonate contents in proglacial sediments and icing fields were carried out in the Werenskioldbreen and the Elisebreen basins (S and NW Spitsbergen respectively). A functional model of CaCO3 migration in a glacier system is proposed which indicates the various paths of the mineral mass flow. Considerations on intensity of glacial processes permitted quantitative estimation of the particular components in respect to the Werenskioldbreen basin. Cryochemical processes do not appear to be of overriding importance in such migration but, clearly, they play a specific role in retaining CaCO3 in the proglacial zone on land. The crystalline forms present in the icings, which have many lattice defects, are very easily re-dissolved or removed by wind.

Przejdź do artykułu

Autorzy i Afiliacje

Elżbieta Bukowska-Jania

Instrukcja dla autorów

The quarterly Polish Polar Research invites original scientific papers dealing with all aspects of polar research. The journal aims to provide a forum for publication of high-quality research papers, which are of international interest.

We warmly welcome review papers and proposals for thematic Special Issues .

Articles must be written in English. Authors are requested to have their manuscript read by a person fluent in English before submission. They should not be longer than 30 typescript pages, including tables, figures and references. However, upon request, longer manuscripts may be considered for publication. All papers are peer-reviewed. With a submitted manuscript, authors should provide their names, affiliations, ORCID number and e-mail addresses of at least three suggested reviewers.

Submission of the manuscript should be supported with a declaration that the work described has not been published previously nor is under consideration by another journal.

For text submission, Word file format is preferred. The text should be prepared in single-column double-spaced format and 25 mm margins. Consult the current issue of the journal for layout and conventions. Figures and tables should be prepared as separate files. Line art images should be scanned and saved as bitmap (black and white) images at a resolution of 600–1200 dpi and tightly cropped. Computer versions of the photographs should be saved in TIFF format of at least 400 dpi (non-interpolated). Maximal publication size of illustrations is 126×196 mm. Authors must make sure that graphics are clearly readable at this size. ‘Hairline’ line width must not be used. All chart axes need to be labeled in full. For labeling sub-graphics in a single figure, capital letters placed in the upper left corner are preferred. Bold letters should not be used in tables (including headers), except to highlight a significant value/information.

A limited number of color reproductions in print is free of charge. Color artwork in PDF is free of charge.

Title should be concise, informative and no longer than 15 words. Abstract should have no more than 250 words. The authors are requested to supply up to 5 keywords, different than words used in the title. The references should be arranged alphabetically and chronologically. Journal names should not be abbreviated. Please, ensure that every reference cited in the text is also present in the reference list and vice versa. Responsibility for the accuracy of bibliographic citations lies entirely with the authors. The inline references to published papers should consist of the surname of the author(s) followed by the year of publication. More than two authors should be cited with the first author’s surname, followed by et al. (Dingle et al. 1998) but in full in the References.

For formatting Reference list, please
Download file or see journal’s latest issues.

The journal does not have article processing charges (APCs) nor article submission charges. No honorarium will be paid to authors for publishing papers.
Please submit your manuscripts to Polish Polar Research using our online submission system.

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji