Life Sciences and Agriculture

Journal of Plant Protection Research

Content

Journal of Plant Protection Research | 2021 | vol. 61 | No 4 |

Download PDF Download RIS Download Bibtex

Abstract

There is an ongoing search for technologies that guarantee soybean productivity. Among them, the application of phytosanitary products stands out, since the sprayer is the most required implement during the agricultural production cycle and each error, in practice, represents a loss in the production process. With this in mind, the objective of this work was to evaluate the volume captured and the characteristics of the application in the different thirds of soybean plants with variations in hydraulic nozzles and spray volumes, as well as the use of electrification of the drops. To this end, a field experiment was conducted during the 2018/2019 summer harvest in an experimental area at the University of Rio Verde. The experimental design used was randomized blocks in a factorial scheme (3 × 4), with four repetitions, in which the first factor consisted of three variations of spray nozzles (simple fan, hollow cone and hollow cone with electrification of the drops). The second factor involved four application rates (50, 100, 150 and 200 l · ha–1). The variables evaluated were the number of drops per cm–2, percentage of coverage, volume median diameter (VMD) and the captured volume (μl · cm–2). According to the results, for the upper thirds, an increase in the application rate increased the volume of captured syrup. However, for the lower third, the factors evaluated did not interfere in this characteristic. The hydraulic tips influenced the density of droplets in the three thirds and the coverage only in the lower one. The increasing rates of application, increases the density of drops and percentage of coverage in the different thirds of the plants. The evaluated factors had no effect on the syrup distribution on the median abaxial surface of the leaves.
Go to article

Bibliography


Baldin E.L.L., Cruz P.L., Morando R., Silva I.F., Bentivenha J.P.F., Tozin L.R.S., Rodrigues T.M. 2017. Characterization of antixenosis in soybean genotypes to Bemisia tabaci (Hemiptera: Aleyrodidae) biotype B. Journal of Economic Entomology 110 (4): 1869–1876. DOI: 10.1093/ jee/tox143
Bayer T., Costa I.F.D., Lenz G., Zemolin C., Marques L.N., Stefanelo M.S. 2011. Equipamento de pulverização aérea e taxas de aplicação de fungicida na cultura do arroz irrigado. [Spraying equipment and rates of fungicide application in irrigated rice]. Revista Brasileira de Engenharia Agrícola e Ambiental 15 (2): 192–198. DOI: https://doi.org/10.1590/ S1415-43662011000200007
Belo M.S.S.P., Pignati W., Dores E.F.G.C., Moreira J.C.M., Peres F. 2012. Uso de agrotóxicos na produção de soja do Estado do Mato Grosso: um estudo preliminar de riscos ocupacionais e ambientais. [Pesticide use in soybean pro-duction in Mato Grosso state, Brazil: A preliminary occupational and environmental risk characterization]. Revista Brasileira Saude Ocupacional 37 (125): 78–88. DOI: https://doi.org/10.1590/S0303-76572012000100011
Boschini L., Robinson L.C., Macedo Junior E.K., Guimaraes V.F.G. 2008. Avaliacao da deposicao da calda de pulverizacao em funcao da vazao e do tipo de bico hidraulico na cultura da soja. [Evaluation the spraying syrup deposition in function of the beak type and the flow, in soybean]. Acta Scientiarum. Agronomy 30 (2): 171–175. DOI: https://doi.org/10.4025/actasciagron.v30i2.1789
Chaim A., Camargo Neto J., Pessoa M.C.P.Y. 2006. Uso do programa computacional Gotas para avaliacao da deposicao de pulverizacao aerea sob diferentes condicoes climaticas. [Use of the gotas software for evaluation of the deposition of aerial spraying under different climatic conditions]. Research and Development Bulletin 39: 18. Climate data. 2020. Climate Rio Verde. Available on: https://pt.climate-data.org/america-do-sul/brasil/goias/rio-verde- 4473/. [Accessed: 13 July 2020]
Cunha J.P.A.R., Marques R.S., Alves G.S. 2016. Deposicao da calda na cultura da soja em funcao de diferentes pressoes de trabalho e pontas de pulverizacao. [Spray deposition on soybean crop as a function of different service pressures and spray nozzles]. Revista Ceres 63 (6): 761–768. DOI: https://doi.org/10.1590/0034-737x201663060003
Cunha J.P.A.R., Reis E.F., Santos R.O. 2006. Controle quimico de ferrugem asiatica da soja em funcao de ponta de pulverizacao e de volume de calda. [Chemical control of Asian soybean rust due to spray tip and spray volume]. Ciencia Rural 36 (5): 1360–1366. DOI: https://doi.org/10.1590/ S0103-84782006000500003
Czaczyk Z., Kruger G., Hewitt A. 2012. Droplet size classification of air induction flat fan nozzles. Journal of Plant Protection Research 52 (4): 415–420. DOI: https://doi.org/10.2478/10045-012-0068-6
Durao C.F., Boller W. 2017. Spray nozzles performance in fungicides applications for Asian soybean rust control. Engenharia Agricola 37 (4): 709–716. DOI: http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v37n4p709-716/2017
Farinha J.V., Martins D., Costa N.V., Domingos V.D. 2009. Deposicao da calda de aplicacao em cultivares de soja no estadio R1. Ciencia Rural 39 (6): 1738–1744. DOI: https://doi.org/10.1590/S0103-84782009000600016
Fehr W.R., Caviness C.E. 1997. Stages of Soybean Development. Ames: Iowa State University, USA, 12 pp. (Special Report, 80).
Fritz B.K., Hoffman W.C., Czaczyk Z., Bagley W., Kruger G., Henry R. 2012. Measurement and classification methods using the ASAE S572.1 reference nozzles. Journal of Plant Protection Research 52 (4): 447–457. DOI: https://doi.org/10.2478/v10045-012-0072x
Furlan S.H., Carvalho F.K., Antuniassi U.R. 2018. Strategies for the control of Asian soybean rust (Phakopsora pachyrhizi) in Brazil: fungicide resistance and application efficacy. Outlooks on Pest Management 29 (3): 120–123. DOI: https://doi.org/10.1564/v29_jun_05
Law S.E. 2014. Electrostatically charged sprays. In: “Pesticide Application Methods” (G.A. Matthews, ed.). 4th ed. Chichester: John Wiley & Sons, USA, 545 pp. DOI: https://doi.org/10.1590/ S1415-43662011000200007
Negrisoli M.M., Raetano C.G., Souza D.M., Souza F.M.S., Bernardes L.M., Bem Junior L., Rodrigues D.M., Sartori M.M.P. 2019. Performance of new flat fan nozzle design in spray deposition, penetration and control of soybean rust. European Journal of Plant Pathology 155 (7): 1–13. DOI: http://doi.org/10.1007/s10658-019-01803-1
Nidera. 2020. NS 7709 IPRO. Available on: http://www.niderasementes. com.br/produto/ns-7709-ipro.aspx. [Accessed: 13 July 2020]
Omoto P.H., Tomaz R.S., Prado E.P. 2017. Quantificacao dos depositos da pulverizacao em funcao da tecnica de aplicacao na cultura da soja. [Quantification of spray deposits as a function of soybean application technique]. Forum Ambiental da Alta Paulista 13 (7): 120–134. DOI: http://dx.doi.org/10.17271/1980082713720171732
Patel M.K., Praveen B., Sahoo H.K., Patel B., Kumar A., Singh M., Nayak M.K., Rajan P. 2017. An advance air-induced air-assisted electrostatic nozzle with enhanced performance. Computers and Electronics in Agriculture 135 (4): 280–288. DOI: https://doi.org/10.1016/j.compag.2017.02.010
Sasaki R.S., Teixeira M.M., Fernandes H.C., Monteiro P.M.B., Rodrigues D.E. 2013. Deposicao e uniformidade de distribuicao de calda de aplicacao em plantas de cafe utilizando a pulverizacao eletrostatica. [Deposition and uniformity of spray syrup distribution in coffee plants using electrostatic spraying]. Ciencia Rural 43 (9): 1605–1609. DOI: https://doi.org/10.1590/S0103-84782013000900011
Scudeler F., Raetano C.G. 2006. Spray deposition and losses in potato as a function of air-assistance and sprayer boom angle. Scientia Agricola 63 (6): 515–521. DOI: https://doi.org/10.1590/S0103-90162006000600001
Silva J.E.R., Cunha J.P.A.R., Nomelini Q.S.S. 2014a. Deposicao de calda em folhas de cafeeiro e perdas para o solo com diferentes taxas de aplicacao e pontas de pulverizacao. [Deposition of spray applied in coffee leaves with different rates and spray nozzles]. Revista Brasileira de Engenharia Agricola e Ambiental 18 (12): 1302–1306. DOI: https://doi. org/10.1590/1807-1929/agriambi.v18n12p1302-1306
Silva B.M.B., Ruas R.D.A., Sichocki D., Dezordi L.R., Caixeta L.F. 2014b. Deposicao da calda de pulverizacao aplicada com pontas de jato plano em diferentes partes da planta de soja (Glycine max) e milho (Zea mays). [Spray spray deposition applied with flat spray tips to different parts of the soybean plant (Glycine max) and corn (Zea mays)]. Engenharia na Agricultura 22 (1): 17–27. DOI: https://doi.org/10.13083/reveng.v22i1.406
Souza D.M., Raetano C.G., Moreira C.A.F., Burno R.C.O.F., Carvalho M.M. 2019. Effects of news sowing arrangements and air assistance on fungicide spray distribution on soybean crop. Acta Scientiarum. Agronomy 41 (1): e42700. DOI: https://doi.org/10.4025/actasciagron.v41i1.42700
Tavares R.M., Silva J.E.R., Alves G.S., Alves T.C., Silva S.M.,
Cunha J.P.A.R. 2017. Tecnologia de aplicacao de inseticidas no controle da lagarta-do-cartucho na cultura do milho. [Insecticide application technology on fall armyworm control in corn]. Revista Brasileira de Milho e Sorgo 16 (1): 30–42. DOI: https://doi.org/10.18512/1980-6477/rbms.v16n1p30-42%20
Van Zyl J.G., Fourie P.H., Schutte G.C. 2013. Spray deposition assessment and benchmarks for control of Alternaria brown spot on mandarin leaves with copper oxychloride. Crop Protection 46 (4): 80–87. DOI: https://doi.org/10.1016/j. cropro.2012.12.005
Viana R.G., Ferreira L.R., Ferreira M.C., Teixeira M.M., Rosell J.R., Tuffi-Santos L.D., Machado A.F.L. 2010. Distribuicao volumetrica e espectro de gotas de pontas de pulverizacao de baixa deriva. [Volumetric distribution and droplet spectrum by low drift spray nozzles]. Planta Daninha 28 (2): 439–446. DOI: https://doi.org/10.1590/S0100-83582010000200024
Zhou Y., Qi L., Jia S., Zheng X., Meng X., Tang Z., Shen C. 2012. Development and application prospects of pneumatic electrostatic sprayer in orchard. Asian Agricultural Research 4 (1): 78–80. DOI: 10.22004/ag.econ.133110
Go to article

Authors and Affiliations

Carlos Eduardo Leite Mello
1
ORCID: ORCID
Eduardo Lima do Carmo
1
ORCID: ORCID
Guilherme Braga Pereira Braz
1
ORCID: ORCID
Gustavo André Simon
1
ORCID: ORCID
João Vitor Alves de Sousa
1
Ana Carolina Pereira dos Reis
1
Marco Túlio Moura Leite
1
Gabriel Elias Soares de Araújo
1

  1. Agronomia, Universidade de Rio Verde, Rio Verde, Brazil
Download PDF Download RIS Download Bibtex

Bibliography


Abdollahi A., Hassani A., Ghosta Y., Meshkatalsadat M.H., Shabani R. 2011. Screening of antifungal properties of essential oils extracted from sweet basil, fennel, summer savory and thyme against post-harvest phytopathogenic fungi. Journal of Food Safety 31: 350−356. DOI: https://doi.org/10.1111/ j.1745-4565.2011.00306.x
Abu-Darwish M.S., Efferth T. 2018. Medicinal plants from near east for cancer therapy. Frontiers in Pharmacology 9: 56. DOI: https://doi.org/10.3389/fphar.2018.00056
Abu-Lafi S., Odeh I., Dewik H., Qabajah M., Hanuš L.O., Dembitsky V.M. 2008. Thymol and carvacrol production from leaves of wild Palestinian Majorana syriaca. Bioresource Technology 99: 3914−3918. DOI: https://doi.org/10.1016/j. biortech.2007.07.042
Alagawany M., El-Hack M.A., Farag M.R., Tiwari R., Dhama K. 2015. Biological effects and modes of action of carvacrol in animal and poultry production and health-a review. Advances in Animal and Veterinary Sciences 3: 73−84. DOI: https://doi.org/10.14737/journal.aavs/2015/3.2s.73.84
Al-Reza S.M., Yoon J.I., Kim H.J., Kim J.S., Kang S.C. 2010. Anti-inflammatory activity of seed essential oil from Zizyphus jujuba. Food Chemistry Toxicology 48: 639−643. DOI: https://doi.org/10.1016/j.fct.2009.11.045
Al-Zubairi A., Al-Mamary M., Al-Ghasani E. 2017. The antibacterial, antifungal, and antioxidant activities of essential oil from different aromatic plants. Global Advanced Research Journal of Medicine and Medical Sciences 6: 224−233.
Asghari Marjanlo A., Mostofi Y., Shoeibi S., Fattahi M. 2009. Effect of cumin essential oil on post-harvest decay and some quality factors of strawberry. Journal of Medicinal Plants 3: 25−43.
Baratta M.T., Dorman H.D., Deans S.G., Biondi D.M., Ruberto G. 1998. Chemical composition, antimicrobial and antioxidative activity of laurel, sage, rosemary, oregano and coriander essential oils. Journal of Essential Oil Research 10: 618−627. DOI: https://doi.org/10.1080/10412905.1998. 9700989
Bhalodia N.R., Shukla V.J. 2011. Antibacterial and antifungal activities from leaf extracts of Cassia fistula L., an ethnomedicinal plant. Journal of Advanced Pharmaceutical Technology & Research 2: 104. DOI: https://doi.org/10.4103/2231- 4040.82956
Boubaker H., Karim H., El Hamdaoui A., Msanda F., Leach D., Bombarda I., Vanloot P., Abbad A., Boudyach E.H., Ait Ben Aoumar A. 2016. Chemical characterization and antifungal activities of four Thymus species essential oils against post-harvest fungal pathogens of citrus. Industrial Crops and Products 86: 95−101. DOI: https://doi.org/10.1016/j. indcrop.2016.03.036
Bora K.S., Sharma A. 2011. The genus Artemisia: a comprehensive review. Pharmaceutical Biology 49: 101−109. DOI: https://doi.org/10.3109/13880209.2010.497815
Camele I., Altieri L., De Martino L., De Feo V., Mancini E., Rana G.L. 2012. In vitro control of post-harvest fruit rot fungi by some plant essential oil components. International Journal of Molecular Sciences 13: 2290–2300. DOI: https:// doi.org/10.3390/ijms13022290
Chaieb K., Hajlaoui H., Zmantar T., Kahla Nakbi A.B., Rouabhia M., Mahdouani K., Bakhrouf A. 2007. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): a short review. Phytotherapy Research 21: 501−506. DOI: https://doi.org/10.1002/ptr.2124
Crisosto C.H., Smilanick J.L., Dokoozlian N.K., Luvisi D.A. 1994. Maintaining table grape post-harvest quality for long distant markets. p. 195−199. In: Proceedings of the International Symposium on Table Grape Production. American Society for Enology and Viticulture, ASEV, June 28–29. Anaheim, CA, USA.
Fraternale D., Giamperi L., Bucchini A., Ricci D., Epifano F., Genovese S., Curini M. 2005. Composition and antifungal activity of essential oil of Salvia sclarea from Italy. Chemistry of Natural Compounds 41: 604−606. DOI: https://doi. org/10.1007/s10600-005-0221-9
Gilchrist-Saavedra L. 1997. Practical guide to the identification of selected diseases of wheat and barley. CIMMYT.
Grzegorczyk-Karolak I., Kuźma Ł., Lisiecki P., Kiss A. 2019. Accumulation of phenolic compounds in different in vitro cultures of Salvia viridis L. and their antioxidant and anpotential. Phytochemistry Letters 30: 324−332. DOI: https://doi.org/10.1016/j.phytol.2019.02.016
Hamini-Kadar N., Hamdane F., Boutoutaou R., Kihal M.,Henni J.E. 2014. Antifungal activity of clove (Syzygium aromaticum L.) essential oil against phytopathogenic fungi of tomato (Solanum lycopersicum L.) in Algeria. Journal of Experimental Biology and Agricultural Sciences 2: 447−454.
Hosseini M.H., Razavi S.H., Mousavi S.M.A., Yasaghi S.A.S., Hasansaraei A.G. 2008. Improving antibacterial activity of edible films based on chitosan by incorporating thyme and clove essential oils and EDTA. Journal of Applied Sciences 8: DOI: https://doi.org/2895−2900.10.3923/jas. 2008.2895.2900
Javed H., Erum S., Tabassum S., Ameen F. 2013. An overview on medicinal importance of Thymus vulgaris. Journal of Asian Scientific Research 3: 974.
Jaradat N.A., Zaid A.N., Al-Ramahi R., Alqub M.A., Hussein F., Hamdan Z., Mustafa M., Qneibi M., Ali I. 2017. Ethnopharmacological survey of medicinal plants practiced by traditional healers and herbalists for treatment of some urological diseases in the West Bank/Palestine. BMC Complementary Medicine and Therapies 17: 255. DOI: https:// doi.org/10.1186/s12906-017-1758-4
Kordali S., Cakir A., Ozer H., Cakmakci R., Kesdek M., Mete E. 2008. Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene. Bioresource Technology 99: 8788−8795. DOI: https://doi. org/10.1016/j.biortech.2008.04.048
Lazar-Baker E., Hetherington S., Ku V., Newman S. 2011. Evaluation of commercial essential oil samples on the growth of post-harvest pathogen Monilinia fructicola (G. Winter) Honey. Letters in Applied Microbiology 52: 227−232. DOI: https://doi.org/10.1111/j.1472-765X.2010.02996.x
Martinez K., Ortiz M., Albis A., Gilma Gutierrez Castaneda C., Valencia M.E., Grande Tovar C.D. 2018. The effect of edible chitosan coatings incorporated with Thymus capitatus essential oil on the shelf-life of strawberry (Fragaria × ananassa) during cold storage. Biomolecules 8: 155. DOI: https:// doi.org/10.3390/biom8040155
Matusinsky P., Zouhar M., Pavela R., Novy P. 2015. Antifungal effect of five essential oils against important pathogenic fungi of cereals. Industrial Crops and Products 67: 208−215. DOI: https://doi.org/10.1016/j.indcrop.2015.01.022
Militello M., Settanni L., Aleo A., Mammina C., Moschetti G., Giammanco G.M., Blazquez M.A., Carrubba A. 2011. Chemical composition and antibacterial potential of Artemisia arborescens L. essential oil. Current Microbiology 62: 1274−1281. DOI: https://doi.org/10.1007/s00284-010- 9855-3
Momen F.M., Amer S.A.A., Refaat A.M. 2001. Repellent and oviposition-deterring activity of rosemary and sweet marjoram on the spider mites Tetranychus urticae and Eutetranychus orientalis (Acari: Tetranychidae). Acta Phytopathologica et Entomologica Hungarica 36: 155−164. DOI: https:// doi.org/10.1556/aphyt.36.2001.1-2.18
Mossa A.T.H. 2016. Green pesticides: Essential oils as biopesticides in insect-pest management. Journal of Environmental Science and Technology 9: 354. DOI: https://doi:10.3923/ jest.2016.354.378
Mothana R.A., Al-Said M.S., Al-Yahya M.A., Al-Rehaily A.J., Khaled J.M. 2013. GC and GC/MS analysis of essential oil composition of the endemic soqotraen Leucas virgata Balf.f. and its antimicrobial and antioxidant activities. International Journal of Molecular Sciences 14: 23129−23139. DOI: https://doi.org/10.3390/ijms141123129
Moura Martins C., de Morais S.A., Martins M.M., Cunha L.C., da Silva C.V., Teixeira T.L., Santiago M.B., de Aquino F.J., Nascimento E.A., Chang R., Martins C.H. 2020. Antifungal and cytotoxicity activities and new proanthocyanidins isolated from the barks of Inga laurina (Sw.) Willd. Phytochemistry Letters 40: 109−120. DOI: https://doi.org/10.1016/j. phytol.2020.10.001
Nejad S.M., Ozgunes H., Basaran N. 2017. Pharmacological and toxicological properties of eugenol. Turkish Journal of Pharmaceutical Sciences 14: 201−206. DOI: https://doi.org/10.4274/tjps.62207
Obeng-Ofori D., Reichmuth C.H. 1997. Bioactivity of eugenol, a major component of essential oil of Ocimum suave (Wild.) against four species of stored-product Coleoptera. International Journal of Pest Management 43: 89−94. DOI: https:// doi.org/10.1080/096708797229040
Olsen R.W. 2000. Absinthe and gamma-aminobutyric acid receptors. p. 4417−4418. In: Proceedings of the National Academy of Sciences of the United States of America, 97. DOI: https://doi.org/10.1073/pnas.97.9.4417
Park J.B. 2011. Identification and quantification of a major antioxidant and anti-inflammatory phenolic compound found in basil, lemon thyme, mint, oregano, rosemary, sage, and thyme. International Journal of Food Sciences and Nutrition 62: 577−584. DOI: https://doi.org/10.3109/09637486.2 011.562882
Phillips C.A., Laird K., Allen S.C. 2012. The use of Citri-V™® An antimicrobial citrus essential oil vapour for the control of Penicillium chrysogenum, Aspergillus niger and Alternaria alternata in vitro and on food. Food Research International 47: 310−314. DOI: https://doi.org/10.1016/j. foodres.2011.07.035
Pinto E., Vale-Silva L., Cavaleiro C., Salgueiro L. 2009. Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. Journal of Medical Microbiology 58: 1454–1462. DOI: https://doi.org/10.1099/jmm.0.010538-0
Politeo O., Carev I., Burčul F., Jukić M., Ajduković P., Tadijana V., Miloš M. 2010. Screening of anti-acetylcholineesterase and antioxidant activity of extracts from selected Croatian plants. In: Proceedings of the 10th Congress of the Croatian Society of Biochemistry and Molecular Biology, 15−18 September 2010, Opatija, Hrvatska, Croatia. Porte A., Godoy R.L.O., Maia-Porte L.H. 2013. Chemical composition of sage (Salvia officinalis L.) essential oil from the Rio de Janeiro State (Brazil). Revista Brasileira de Plantas Medicinais 15: 438−441. DOI: https://doi.org/10.1590/ S1516-05722013000300018
Rajkowska K., Nowak A., Kunicka-Styczyńska A., Siadura A. 2016. Biological effects of various chemically characterized essential oils: Investigation of the mode of action against Candida albicans and HeLa cells. RSC Advances 6: 97199−97207. DOI: https://doi.org/10.1039/C6RA21108A
Rozman V., Kalinović I., Liška A. 2006. Bioactivity of 1,8-cineole, camphor and carvacrol against rusty grain beetle (Chryptolestes ferrugineus Steph.) on stored wheat. In: Proceeding of the 9th International Working Conference on Stored Product Protection, 15−18 October 2006, Abrapos, Passo Fundo, Brazil.
Sabbo Behr., Hejaz H., Jahajha A., Al-Akhras S., Al-Jaas H., Abu-Lafi S. 2016. Antioxidant an antimicrobial activities of the leaf extract of Salvia palaestina. Journal of Applied Pharmaceutical Science 6: 76. DOI: https://doi: 10.7324/ JAPS.2016.600113
Samara R., Hunter D.M., Stobbs L.W., Greig N., Lowery D.T., Delury N.C. 2017. Impact of Plum Pox Virus (PPV-D) infection on peach tree growth, productivity and bud cold hardiness. Canadian Journal of Plant Pathology 39: 218−228. DOI: https://doi.org/10.1080/07060661.2017.1336489
SAS Institute, 1998. SAS Users Guide, Statistics. Version 2. SAS Institute, Cary, NC. Shah A., Jani M., Shah H., Chaudhary N., Shah A. 2014. Antimicrobial effect of Clove oil (Laung) extract on Enterococcus faecalis. Journal of Advanced Oral Research 5: 36−38. DOI: https://doi.org/10.1177/2229411220140307
Shirzad H., Hassani A., Ghosta Y., Abdollahi A., Finidokht R., Meshkatalsadat M. 2011. Assessment of the antifungal activtimicrobiality of natural compounds to reduce postharvest gray mould (Botrytis cinerea Pers.: Fr.) of kiwifruits (Actinidia deliciosa) during storage. Journal of Plant Protection Research 51 (1): 1−6. DOI: https://doi.org/10.2478/v10045-011-0001-4
Shoaib A., Saeed G., Ahmad S. 2014. Antimicrobial activity and chemical analysis of some edible oils (Clove, Kalonji and Taramira). African Journal of Biotechnology 13: 4347−4354. DOI: https://doi.org/10.5897/AJB2014.13683
Sighamony S., Anees I., Chandrakala T.S., Osmani Z. 1986. Efficacy of certain indigenous plant products as grain protectants against Sitophilus oryzae (L.) and Rhyzopertha dominica (F.). Journal of Stored Products Research 22: 21−23. DOI: https://doi.org/10.1016/0022-474X(86)90042-1
Snowdon A.L. 1990. Color atlas of post-harvest diseases and disorders of fruits and vegetables. Vol. 1. In: "General Introduction and Fruits". CRC Press, Boca Raton FL.
Taylor S. 1993. Why sulfite alternatives? Food Technology 47: 14. Thosar N., Basak S., Bahadure R.N., Rajurkar M. 2013. Antimicrobial efficacy of five essential oils against oral pathogens: An in vitro study. European Journal of Dentistry 7: 71−77. DOI: https://doi/org/10.4103/1305-7456.119078
Vitoratos A., Bilalis D., Karkanis A., Efthimiadou A. 2013. Antifungal activity of plant essential oils against Botrytis cinerea, Penicillium italicum and Penicillium digitatum. Notulae Botanicae Horti Agrobotanici 41: 86−92. DOI: https://doi. org/10.15835/nbha4118931
Zabka M., Pavela R. 2013. Antifungal efficacy of some natural phenolic compounds against significant pathogenic and toxinogenic filamentous fungi. Chemosphere 93: 1051−1056. DOI: https://doi.org/10.1016/j.chemosphere.2013.05.076
Go to article

Authors and Affiliations

Rana Samara
1
ORCID: ORCID
Tawfiq Qubbaj
2
ORCID: ORCID
Ian Scott
3
ORCID: ORCID
Tim Mcdowell
3

  1. Horticulture and Agricultural Extension, Palestine Technical University-Kadoorie, Tulkarm, Palestine
  2. Department of Plant Production and Protection, Faculty of Agriculture and Veterinary Medicine, An-Najah National University, Nablus, Palestine
  3. London Research and Development Centre, Agriculture and Agri-Food Canada, Canada
Download PDF Download RIS Download Bibtex

Abstract

Excessive use of chemical fertilizers, in agriculture, has negative impacts on water, soil and affects the environment and health. In recent decades, researchers have been interested in the natural benefits of natural microorganisms and how they could be a good alternative to the use of chemical fertilizers. The aim of this study was to investigate the effect of soil inoculation with strains of mycorrhizae and beneficial bacteria on soil properties and productivity of table grapes. Field trials were conducted on a commercial table grape production farm ( Vitis vinifiera cv. Mousca), located in northeastern Morocco. Twelve-yearold plants were used. Control plants were not inoculated (T1). The prototype plants were inoculated with 1.2 × 104 of Glomus iranicum var. tenuihypharum/100 g (T2), a mixture of 1/2 concentration of Glomus iranicum var. tenuihypharum and 1/2 concentration of Pseudomonas putida (T3) and 1 × 108 CFU ∙ g–1 of Pseudomonas putida (T4). The inoculations were realized twice; the first inoculation was completed on July 19, 2019 while the second inoculation on February 21, 2020. Soil analyses were carried out, both physicochemical (pH, electrical conductivity (EC), salinity, % of dry matter) and microbiological properties (total flora, fungi and actinobacteria). Plant growth (length of the plant, number and diameter of sticks, number of clusters per tree, number of nodes per stick, distance between nodes and bud burst), yield and fruit quality (number of berries per cluster, cluster weight, cluster length and width, pH, Brix degrees, acidity, EC and % dry matter) were measured. Results showed slight trends regarding the effects of treatments on the physicochemical and microbiological properties of the soil, plant growth and fruit quality. The number of clusters was significantly higher in Glomus (T2) Pseudomonas (T4) and Glomus than in control treatments.
Go to article

Bibliography


Aguín O., Mansilla J.P., Vilariño A., Sainz M.J. 2004. Effects of mycorrhizal inoculation on root morphology and nursery production of three grapevine rootstocks. American Journal of Ecology and Viticulture 55 (1): 108−111. Available on: https://www.ajevonline.org/content/55/1/108.articleinfo [Accessed: 15 May 2021]
Aktar W., Sengupta D., Chowdhury A. 2009. Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary Toxicology 2: 1−12. DOI: https://doi.org/10.2478/ v10102-009-0001-7
Atafa Z., Mesdaghinia A., Nouri J., Homaee M., Yunesian M., Ahmadimoghaddam M., Mahvi A.H. 2010. Effect of fertilizer application on soil heavy metal concentration. Environmental Monitoring and Assessment 160 (1−4): 83. DOI : https://doi.org/10.1007/s10661-008-0659-x
Augé R.M. 2004. Mycorhizes à arbuscules et relations eau/sol/ plante. Canadian Journal of Soil Science 84: 373−381. DOI: https://doi.org/10.1139/b04-020
Baslam M., Esteban R., García-Plazaola J.I., Goicoechea N. 2013. Effectiveness of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of major carotenoids, chlorophylls and tocopherol in green and red leaf lettuces. Applied Microbiology and Biotechnology 97: 3119−3128. DOI: https://doi.org/10.1007/s00253-012-4526-x
Birhane E., Sterck F.J., Fetene M., Bongers F., Kuyper T.W. 2012. Les champignons mycorhiziens arbusculaires améliorent la photosynthèse, l’efficacité d’utilisation de l’eau et la croissance des semis d’encens dans des conditions de disponibilité en eau pulsée. Oecologia 169: 895−904.
Bona E., Cantamessa S., Massa N., Manassero P., Marsano F., Copetta A., Lingua G., D'Agostino G., Gamalero E., Berta G. 2017. Arbuscular mycorrhizal fungi and plant growth- -promoting pseudomonads improve yield, quality and nutritional value of tomato: a field study. Mycorrhiza 27: 1−11. DOI: https://doi.org/10.1007/s00572-016-0727-y
Bona E., Todeschini V., Cantamessa S., Cesaro P., Copetta A., Lingua G., Gamalero E., Berta G., Massa N. 2018. Combined bacterial and mycorrhizal inocula improve tomato quality at reduced fertilization. Scientia Horticulturae 234: 160−165. DOI: https://doi.org/10.1016/j.scienta.2018.02.026
Boutas Knit A., Baslam M., Ait-El-Mokhtar M., Anli M., Ben- -Laouane R., Douira A., El Modafar C., Mitsui T., Wahbi S., Meddich A. 2020. Arbuscular mycorrhizal fungi mediate drought tolerance and recovery in two contrasting carob (Ceratonia siliqua L.) ecotypes by regulating stomatal, water relations, and (in) organic adjustments. Plants 9 (1): 80. DOI: https://doi.org/10.3390/plants9010080
Brundrett M.C., Abbott L.K. 2002. Arbuscula mycorrhiza in plant Communities. p. 151−193. In: “Plant Conservation and Biodiversity” (K. Sivasithamparam, K.W. Dixon, R.L. Barrett eds.). Kluwer Academic-Publishers: Dordrecht, Netherlands, 391 pp.
Chen W., Meng P., Feng H., Wang C. 2020. Effects of arbuscular mycorrhizal fungi on growth and physiological performance of Catalpa bungei C.A. Mey. under drought stress. Forests 11 (10): 1117. DOI: https://doi.org/10.3390/ f11101117
Childers D.L., Corman J., Edwards M., Elser J.J. 2011. Sustainability challenges of phosphorus and food: solutions from closing the human phosphorus cycle. Bioscience 61 (2): 117−124. DOI: https://doi.org/10.1525/bio.2011.61.2.6
Criss R., Davisson M. 2004. Fertilizers, water quality and human health. Environnemental Heath Perspectives 112 (10): A536. DOI : https://doi.org/10.1289/ehp.112-a536
Farhadinejad T., Khakzad A., Jafari M. 2014. The study of environmental effects of chemical fertilizers and domestic sewage on water quality of Taft region, Arabian Journal of Geoscience 7: 221−229. DOI: https://doi.org/10.1007/s12517-012-0717-0
Garcia K., Zimmermann S.D. 2014. Le rôle des associations mycorhiziennes dans la nutrition potassique des plantes. Plant Science 5: 337. DOI: https://doi.org/10.3389/fpls.2014.00337
Geng Y., Cao G., Wang L., Wang S. 2019. Effects of equal chemical fertilizer substitutions with organic manure on yield, dry matter, and nitrogen uptake of spring maize and soil nitrogen distribution. PLoS ONE 14 (7): e0219512. DOI : https://doi.org/10.1371/journal.pone.0219512
Gianinazzi S., Gollotte A., Binet M.N., van Tuinen D., Redecker D., Wipf D. 2010. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20: 519−530. DOI: https://doi.org/10.1007/s00572-010-0333-3
Halpern M., Bar-Tal A., Ofek M., Minz D. 2015. The use of biostimulants for enhancing nutrient uptake. Advances in Agronomy 130: 141−174. DOI: https://doi.org/10.1016/ bs.agron.2014.10.001
Hmelak Gorenjak A. 2013. Nitrate in vegetables and their impact on human health. Acta Alimentaria 42 (2): 158−172. DOI: https://doi.org/10.1556/AAlim.42.2013.2.4
Javanmardi J., Zarei M., Saei M. 2001. Influence of arbuscular mycorrhizal fungi on physiology and fruit quality of pepino (Solanum muricatum Ait.) in vermicompost amended medium. Advances in Horticultural Science 28 (1): 35−42. Available on: https://core.ac.uk/download/pdf/228571948.pdf. [Accessed: 15 May 2021]
Jiang Y., Wang W., Xie Q. Liu N., Liu L., Wang D., Zhang X., Yang C., Chen X., Tang D., Wang E. 2017. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 16: 356 (6343): 1172−1175. DOI: https://doi.org/10.1126/science.aam9970
Johansson J.F., Paul L.R.R.D. 2004. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiology Ecology 48 (1): 1−13. DOI: https://doi.org/10.1016/j.femsec.2003.11.012
Kamayestani A., Rezaei M., Sarkhosh A., Asghari H. 2019. Effects of arbuscular mycorrhizal fungi (Glomus mosseae) on growth enhancement and nutrient (NPK) uptake of three grape (Vitis vinifera L.) cultivars under three different water deficit levels. Australian Journal of Crop Science: 1401−1408. DOI: https://doi.org/10.21475/ajcs.19.13.09.p1174
Koide R.T., Mosse B. 2004. A history of research on arbuscular mycorrhiza. Mycorrhiza 14 (3): 145−163. DOI: https://doi. org/10.1007/s00572-004-0307-4
Li Y., Chen Y.L., Lin X.J., Liu R.J. 2012. Effects of arbuscular mycorrhizal fungi communities on soil quality and the growth of cucumber seedlings in a greenhouse soil of continuously planting cucumber. Pedosphere 22 (1): 79−87. DOI: https://doi.org/10.1016/S1002-0160(11)60193-8
Liu G., Bollier D., Gübeli C., Peter N., Arnold P., Egli M., Borghi L. 2018. Simulated microgravity and the antagonistic influence of strigolactone on plant nutrient uptake in low nutrient conditions. NPJ Microgravity 4 (1): 1−10. DOI: https:// doi.org/10.1038/s41526-018-0054-z
Luciani E., Frioni T., Tombesi S., Farinelli D., Gardi T., Ricci A., Sabbatini P., Palliotti A. 2019. Effects of a new arbuscular mycorrhizal fungus (Glomus iranicum) on grapevine development. BIO Web Conference 13, Vineyard Management and Adaptation to Climate Change Section: 04018 (5 p.). DOI: https://doi.org/10.1051/bioconf/20191304018
Meddich A., Jaiti F., Bourzik W., El Asli A., Hafidi M. 2015. Use of mycorrhizal fungi as a strategy for improving the drought tolerance in date palm (Phoenix dactylifera). Scientia Horticulturae 192: 468−474. DOI: https://doi.org/10.1016/j.scienta.2015.06.024
Neuenkamp L., Moora M., Öpik M., Davison J., Gerz M., Männistö M., Jairus T., Vasar M., Zobel M. 2018. The role of plant mycorrhizal type and status in modulating the relationship between plant and arbuscular mycorrhizal fungal communities. Hempel 220: 952−953. DOI: https://doi.org/10.1111/nph.14995
Ozdemir G., Akpinar C., Sabir A., Bilir H., Tangolar S., Ortas I. 2010. Effect of inoculation with mycorrhizal fungi on growth and nutrient uptake of grapevine genotypes (Vitis spp.). European Journal of Horticultural Science 75 (3): 103−110. JSTOR: https://www.jstor.org/stable/24126418
Popko M., Michalak I., Wilk R., Gramza M., Chojnacka K., Górecki H. 2018. Effect of the new plant growth biostimulants based on amino acids on yield and grain quality of winter wheat. Molecules 23 (2): 470. DOI: https://doi.org/10.3390/molecules23020470
Reuter D.J. 2008. Soil analysis. An interpretation manual. CSIRO Publishing. Collingwood, Victoria, Australia, 387 pp. Rodriguez-Echeverria S., Costa S.R., Freitas H. 2007. Biodiversité et interactions dans la rhizosphère. p. 581−600. In: “Functional Plant Ecology”, 2nd ed. (F.I. Pugnaire, F. Valladares, eds.). CRC Press, New York, USA, 724 pp.
Ronga D., Caradonia F., Francia E., Morcia C., Rizza F., Badeck F.W., Ghizzoni R., Terzi V. 2019. Interaction of tomato genotypes and arbuscular mycorrhizal fungi under reduced irrigation. Horticulturae 5 (4): 79. DOI: https://doi.org/10.3390/horticulturae5040079
Riah W., Laval K., Laroche-Ajzenberg E., Mougin C., Latour X., Trinsoutrot-Gattin I. 2014. Effets des pesticides sur les enzymes du sol. Environmental Chemistry Letters 12: 257−273. DOI: https://doi.org/10.1007/s10311-014-0458-2
Schubert R., Werner S., Cirka H., Rödel P., Moya Y.T., Mock H.P., Hutter I., Kunze G. Hause B. 2020. Effects of arbuscular mycorrhization on fruit quality in industrialized tomato production. International Journal of Molecular Sciences 21: 7029. DOI: https://doi.org/10.3390/ijms21197029
Shaver G.R., Chapin F.S. 1986. Effect of fertilizer on production and biomass of tussock tundra, Alaska, USA. Arctic and Alpine Research 18 (3): 261−268. DOI: https://doi.org/10.2307/1550883
Singh R., Soni S.K., Kalra A. 2013. Synergy between Glomus fasciculatum and a beneficial Pseudomonas in reducing root diseases and improving yield and forskolin content in Coleus forskohlii Briq. under organic field conditions. Mycorrhiza 23 (1): 35−44. DOI: https://doi.org/10.1007/s00572-012-0447-x
Soares C., Siqueira J. 2008. Mycorrhiza and phosphate protection of tropical grass species against heavy metal toxicity in multi-contaminated soil. Biology and Fertility of Soils 44: 833−841. DOI: https://doi.org/10.1007/s00374-007-0265-z
Trouvelot S., Bonneau L., Redecker D., Van Tuinen D., Adrian M. Wipf D. 2015. Arbuscular mycorrhiza symbiosis in viticulture: A Review. Agronomy for Sustainable Development 35 (4): 1449−1467. DOI: https://doi.org/10.1007/s00374-007-0265-z
Ye L., Zhao X., Bao E., Li J., Zou Z., Cao K. 2020. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Scientific Reports 10 (1): 1−11. DOI: https://doi.org/10.1038/s41598-019-56954-2
Yousaf M., Li J., Lu J. 2017. Effects of fertilization on crop production and nutrient-supplying capacity under rice-oilseed rape rotation system. Scientific Report 7: 1270−1279. DOI: https://doi.org/10.1038/s41598-017-01412-0
Go to article

Authors and Affiliations

Salah Ed-dine Samri
1
ORCID: ORCID
Kamal Aberkani
1
ORCID: ORCID
Mourad Said
1
Khadija Haboubi
2
ORCID: ORCID
Hassan Ghazal
3
ORCID: ORCID

  1. Biology and Geology, Plolydisciplinary Faculty of Nador, University Mohammed Fisrt, Selonane, Morocco
  2. Environment, National School of Applied Sciences, University Abdelmalek Essaadi, Al Hoceima, Morocco
  3. Bioinformatics, National Center for Scientific and Technical Research, Rabat, Morocco
Download PDF Download RIS Download Bibtex

Abstract

False jagged-chickweed ( Lepyrodiclis holosteoides (C.A. Mey.) Fenzl ex Fisch. & C.A. Mey.) is an invasive weed species distributed in many regions of Iran. Scientific knowledge about the biology and ecology of false jagged-chickweed is rare. In a series of laboratory experiments, the effect of chilling treatments, potassium nitrate (KNO3), gibberellic acid (GA3), concentrations, temperature regimes, and sowing depths on seed germination and breaking seed dormancy of false jagged-chickweed was studied. In two field experiments the phenology of false jagged-chickweed and winter wheat ( Triticum aestivum) was also compared. Chilling treatment for 15 days, a KNO3 concentration of 30 μmolar and a GA3 concentration of 144 μmolar increased germination percentage and germination rate. However, chilling treatment for 15 days did not increase germination rate as well as the KNO3 and GA3 treatments. A quadratic polynomial model predicted that the optimum temperature giving the maximum germination percentage was 22°C. Seedlings emerged in a range of sowing depths from 0 to 8 cm, while no seedling emergence occurred at sowing depths greater than 10 cm. Based on a Gaussian model, the optimum sowing depth was predicted to be 3.9 cm. False jagged-chickweed required higher growing degree days (GDD) for seedling emergence than winter wheat, while the flowering stage of false jagged-chickweed occurred earlier than winter wheat. Results achieved in the present study are of interest not only for studying other life cycle aspects of this species but also as basic information for developing management strategies.
Go to article

Bibliography


Andersson L., Milberg P. 1998. Variation in seed dormancy among mother plants, populations and years of seed collection. Seed Science Research 8: 29–38. DOI: https://doi.org/10.1017/S0960258500003883
Anonymous G.P. 2020. Global Plants. Available on: https://plants.jstor.org/compilation/Lepyrodiclis.holosteoides
Anonymous USDA. 2020. Natural Resources Conservation Service. Available on: https://plants.usda.gov/home/plant Profile?symbol=LEHO7 [Accessed: 20 February 2021]
Bakar B.H., Nabi L.N.A. 2003. Seed germination, seedling establishment and growth patterns of wrinklegrass (Ischaemum rugosum Salisb.). Weed Biology and Management 3: 8−14. DOI: https://doi.org/10.1046/j.1445-6664.2003.00075.x
Begum M., Juraimi A.S., Amartalingam R., Bin Man A., Bin Syed Rastans S.O. 2006. The effects of sowing depth and flooding on the emergence, survival, and growth of Fimbristylis miliacea (L.) Vahl. Weed Biology and Management 6: 157−164. DOI: https://doi.org/10.1111/j.1445-6664.2006.00209.x
Benvenuti S., MacChia M., Miele S. 2001. Quantitative analysis of emergence of seedlings from buried weed seeds with increasing soil depth. Weed Science 49: 528−535. DOI: https://doi.org/10.2307/4046486
Deinhard R., Nazari S., Qorani Y. 2018. Estimation of cardinal temperatures of Lepyrodiclis holosteoides using regression models. Iranian Journal of Seed Science and Technology 7: 107−117. DOI: https://doi.org/10.22034/ijsst.2018.116531
Dorado J., Fernández-Quintanilla C., Grundy A.C. 2009. Germination patterns in naturally chilled and nonchilled seeds of fierce thornapple (Datura ferox) and velvetleaf (Abutilon theophrasti). Weed Science 57: 155−162. DOI: https://doi.org/10.1614/WS-08-122.1
Elahifard E., Derakhshan A. 2018. Asian spiderflower (Cleome viscosa) germination ecology in southern Iran. Weed Biology and Management 18: 110−117. DOI: https://doi.org/10.1111/wbm.12154
Foley M.E. 2004. Leafy spurge (Euphorbia esula) seed dormancy. Weed Science 52: 74−77. DOI: https://doi.org/10.1614/ P2002-146
Forte C.T., Nunes U.R., Filho A.C., Galon L., Chechi L., Roso R., Menegat A.D., Rossetto E.D.O., Franceschetti M.B. 2019. Chemical and environmental factors driving germination of Solanum americanum seeds. Weed Biology and Management 19: 113−120. DOI: https://doi.org/10.1111/wbm.12187
Golmohammadzadeh S., Zaefarian F., Rezvani M. 2015. Effects of some chemical factors, prechilling treatments and interactions on the seed dormancy-breaking of two Papaver species. Weed Biology and Management 15: 11−19. DOI: https://doi.org/10.1111/wbm.12056
Guillemin J.-P., Chauvel B. 2011. Effects of the seed weight and burial depth on the seed behavior of common ragweed (Ambrosia artemisiifolia). Weed Biology and Management 11: 217−223. DOI: https://doi.org/10.1111/j.1445-6664.2011.00423.x
Honarmand S.J., Nosratti I., Nazari K., Heidari H. 2016. Factors affecting the seed germination and seedling emergence of muskweed (Myagrum perfoliatum). Weed Biology and Management 16: 186−193. DOI: https://doi.org/10.1111/wbm.12110
Malik M.S., Norsworthy J.K., Riley M.B., Bridges W. 2010. Temperature and light requirements for wild radish (Raphanus raphanistrum) germination over a 12-month period following maturation. Weed Science 58: 136−140. DOI: https://doi.org/10.1614/WS-09-109.1
Marshall E.J.P. 2019. Reflections on 14 years as Editor-in-Chief. Weed Research 59: 1−4. DOI: https://doi.org/10.1111/wre.12350
McMaster G.S., Wilhelm W.W. 1997. Growing degree-days: one equation, two interpretations. Agricultural and Forest Meteorology 87: 291−300. DOI: http://dx.doi.org/10.1016/S0168-1923(97)00027-0
Mighani F., Khordostan Z. 2019. Study of some environmental factors on seed germination of Lepyrodiclis holosteoides. Applied Biology 31: 127−138. DOI: https://doi.org/10.22051/ jab.2019.4239
Minbashi Moeini M. 2011. Preparation of weed species distribution of Iran wheat fields with GIS. Iranian Research Institute Plant Protection (IRIPP), 300 pp. (in Persian)
Mirtaheri S.M., Vazan S., Baghestani M.A., Paknejad F., Tohidloo G. 2015. Investigation effect of flooding and burial depth on germination and percentage of Lepyrodiclis holosteoides Fenzl. Biological Forum 7: 1840−1844.
Puttha R., Goggi A.S., Gleason M.L., Jogloy S., Kesmala T., Vorasoot N., Banterng P., Patanothai A. 2014. Pre-chill with gibberellic acid overcomes seed dormancy of Jerusalem artichoke. Agronomy for Sustainable Development 34: 869−878. DOI: https://doi.org/10.1007/s13593-014-0213-x
R Core Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available on: http://www.R-project.org/
Rabeler R.K. 1992. Lepyrodiclis holosteoides (Caryophyllaceae), “New” to North America. Madroño 39: 240−242.
Ranal M.A., Santana D.Gd. 2006. How and why to measure the germination process? Brazilian Journal of Botany 29: 1−11.
Ranal M.A., Santana D.Gd., Ferreira W.R., Mendes-Rodrigues C. 2009. Calculating germination measurements and organizing spreadsheets. Brazilian Journal of Botany 32: 849−855.
Rezvani M., Zaefarian F. 2016. Hoary cress (Cardaria draba (L.) Desv.) seed germination ecology, longevity and seedling emergence. Plant Species Biology 31: 280−287. DOI: https://doi.org/10.1111/1442-1984.12113
Rossini Oliva S., Leidi E.O., Valdés B. 2009. Germination responses of Erica andevalensis to different chemical and physical treatments. Ecological Research 24: 655. DOI: https://doi.org/10.1007/s11284-008-0536-7
Salazar-Gutierrez M., Johnson J., Chaves-Cordoba B., Hoogenboom G. 2013. Relationship of base temperature to development of winter wheat. International Journal of Plant Protection 7: 741−762.
Sarhaddi M., Rastgoo M., Ezadi Darbandi E., Ghanbari A., Baghestani M. 2019. The study of dormancy, germination and emergence biological aspects of jagged-chickweed (Lepyrodiclis holosteoides) seeds. Iranian Journal of Weed Science 15: 77−95. DOI: https://doi.org/10.22092/ijws.2019.1501.06
Tester M., Morris C. 2006. The penetration of light into soil. Plant, Cell & Environment 10: 281−286. DOI: https://doi.org/10.1111/j.1365-3040.1987.tb01607.x
Wei S., Zhang C., Chen X., Li X., Sui B., Huang H., Cui H., Liu Y., Zhang M., Guo F. 2010. Rapid and effective methods for breaking seed dormancy in buffalobur (Solanum rostratum). Weed Science 58: 141−146. DOI: https://doi.org/10.1614/WS-D-09-00005.1
Yaghoubi S., Aghaalikhani M., Ghelavand M., Zand E. 2011. Evaluation of important growth parameters of Lepyrodiclis (Lepyrodiclis holosteoides Fenzl.) under different light densities and nitrogen rates. Iranian Journal of Weed Science 7: 31−45.
Zand E., Nezamabadi N., Baghestani M.A., Shimi P., Mousavi S.K. 2017. A Guide to Chemical Control of Win Iran. JDM Press, Mashhad, Iran, 216 pp.
Go to article

Authors and Affiliations

Mehdi Minbashi Moeini
1
Eshagh Keshtkar
2
Hamidreza Sasanfar
1
Mohammad Ali Baghestani
1

  1. Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
  2. Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
Download PDF Download RIS Download Bibtex

Abstract

The entomopathogenic fungi (EPF) are characterized as fungi with various functions and numerous mechanisms of action. The ability to establish themselves as beneficial endophytes provides a sound ground for their exploitation in crop production and protection. The purpose of this study was to evaluate the entomopathogenic strains of Beauveria bassiana and Mertarhizium anisopliae for their potential to colonize cucumber plants under natural environmental conditions in non-sterile substrate. Seed submersion in conidial suspension resulted in systemic colonization of cucumber plants 28 days post-inoculation. Scanning electron microscope micrographs demonstrated that conidia of both fungal genera have adhered, germinated and directly penetrated seed epidermal cells 24 hr post-submersion. Treated with EPF cucumber seeds resulted seedlings tissues of which contained a significantly higher amount of total phenolic compounds and unchanged amounts of chlorophylls. There was a significant negative effect of endophytic colonization on the Aphis gossypii population size after 5 days of exposure as well as a positive effect on cucumber growth and development 7 weeks post-inoculation. We suggest that reduction of A. gossypii population on mature Cucumis sativus plants is caused via an endophyte-triggered improvement of plant’s physiological parameters such as enhanced plant growth with subsequent increase in plant resistance through augmented production of phenolic compounds.
Go to article

Bibliography


Ainsworth E.A., Gillespie K.M. 2007. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature Protocols 2: 875−877. DOI: 10.1038/nprot.2007.102
Akello J., Sikora R. 2012. Systemic acropedal influence of endophyte seed treatment on Acyrthosiphon pisum and Aphis fabae offspring development and reproductive fitness. Biological Control 61: 215−221. DOI: 10.1016/J.BIOCONTROL.2012.02.007
Akutse K., Maniania N., Fiaboe K., Van Den Berg J., Ekesi S. 2013. Endophytic colonization of Vicia faba and Phaseolus vulgaris (Fabaceae) by fungal pathogens and their effects on the life-history parameters of Liriomyza huidobrensis (Diptera: Agromyzidae). Fungal Ecology 6: 293−301. DOI: https://doi.org/10.1016/j.funeco.2013.01.003
Bajan C., Tyrawska D., Popowska-Nowak E., Bienkowski P. 1998. Biological response of Beauveria bassiana strains to heavy metal pollution and their accumulative ability. Ecological Chemistry and Engineering 5 (8−9): 676−685.
Bamisile B.S., Dash C.K., Akutse K.S., Keppanan R., Afolabi O.G., Hussain M., Qasim M., Wang L. 2018. Prospects of endophytic fungal entomopathogens as biocontrol and plant growth promoting agents: An insight on how artificial inoculation methods affect endophytic colonization of host plants. Microbiological Research 217: 34–50. DOI: https://doi.org/10.1016/j.micres.2018.08.016
Barelli L., Moreira C.C., Bidochka M.J. 2018. Initial stages of endophytic colonization by Metarhizium involves rhizoplane colonization. Microbiology 164: 1531–1540. DOI: 10.1099/mic.0.000729.
Barnes J.D., Balaguer L., Manrique E., Elvira S., Davison A.W. 1992. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environment 32: 83–100. DOI: http://dx.doi.org/10.1016/0098-8472(92)90034-Y
Behie S.W., Jones S.J., Bidochka M.J. 2015. Plant tissue localization of the endophytic insect pathogenic fungi Metarhizium and Beauveria. Fungal Ecology 13: 112–119. DOI: 10.1016/J.FUNECO.2014.08.001
Blackman R.L. 2010. Aphids − Aphidinae (Macrosiphini). Handbook for the Identification of British Insects 2 (7): 1−413.
Blackman R.L., Eastop V.F. 2000. Aphids on the world’s crops: An identification and information guide. John Wiley and Sons, Chichester, UK. XF2006251066.
Braniša J., Jenisova Z., Porubska M., Jomova K., Valko M. 2014. Spectrophotometric determination of chlorophylls and carotenoids. An effect of sonication and sample processing. Journal of Microbiology, Biotechnology and Food Sciences 3 (2): 61−64.
Carriere Y., Bouchard A., Bourassa S., Brodeur J. 1998. Effect of endophyte incidence in perennial ryegrass on distribution, host choice, and performance of the hairy chinch bug (Hemiptera: Lygaeidae). Economic Entomology 91: 324–328. DOI: https://doi.org/10.1093/jee/91.1.324
Castillo-Lopez D., Zhu-Salzman K., Ek-Ramos M.J., Sword G.A. 2014. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions. PLoS ONE 9 (8): e103891. DOI: 10.1371/journal.pone.0103891
Chung I.M., Park Chun J.C., Yun S.J. 2003. Resveratrol accumulation and resveratrol synthase gene expression in response to abiotic stresses and hormones in peanut plants. Plant Science 164: 103–109. DOI: 10.1016/S0168-9452(02)00341-2
Clay K. 1996. Interactions among fungal endophytes, grasses and herbivores. Researches on Population Ecology 38 (2): 191–201. DOI: https://doi.org/10.1007/BF02515727
Clay K., Marks S., Cheplick G.P. 1993. Effects of insect herbivory and fungal endophyte infection on competitive interactions among grasses. Ecology 74 (6): 1767–1777. DOI: https://doi.org/10.2307/1939935
Clifton E.H., Jaronski S.T., Coates B.S., Hodgson E.W., Gassmann A.J. 2018. Effects of endophytic entomopathogenic fungi on soybean aphid and identification of Metarhizium isolates from agricultural fields. PLoS ONE 13 (3): e0194815. DOI: https://doi.org/10.1371/journal.pone.0194815
Daayf F., Ongena M., Boulanger R., El Hadrami I., Belanger R.R. 2000. Induction of phenolic compounds in two cultivars of cucumber by treatment of healthy and powdery mildew infected plants with extracts of Reynoutria sachalinensis. Journal of Chemical Ecology 26 (7): 1579−1593. DOI: https://doi.org/10.1023/A:1005578510954
Diaz Napal G.N., Defago M., Valladares G., Palacios S. 2010. Response of Epilachna paenulata to two flavonoids, pinocembrin and quercetin, in a comparative study. Journal of Chemical Ecology 36 (8): 898–904. DOI: 10.1007/s10886-010-9823-1
Dugassa-Gobena D., Raps A., Vidal S. 1996. Einfluß von Acremonium strictum auf den Sterolhaushalt von Pflanzen: Ein möglicher Faktor zum veränderten Verhalten von Herbivoren. Mitteilungen aus der Biologischen Bundesanstalt fur Land- und Forstwirtschaft 321: 299.
Furstenberg-Hagg J., Zagrobelny M., Bak S. 2013. Plant defense against insect herbivores. International Journal of Molecular Sciences 14 (5): 10242–10297. DOI: 10.3390/ijms140510242
Gange A.C., Koricheva J., Currie A.F., Jaber L.R., Vidal S. 2019. Meta-analysis of the role of entomopathogenic and unspecialized fungal endophytes as plant bodyguards. New Pathologist 223 (4): 2002–2010. DOI: https://doi.org/10.1111/nph.15859
Gawel N.J., Jarret R.L. 1991. A modified CTAB DNA extraction procedure for musa and ipomoea. Plant Molecular Biology Reporter 9 (3): 262−266. DOI: 10.1007/BF02672076
Gissella M.V., David B.O., James R.B. 2006. Efficacy assessment of Aphidius colemani (Hymenoptera: Braconidae) for suppression of Aphis gossypii (Homoptera: Aphididae) in greenhouse-grown chrysanthemum. Economic Entomology 99 (4): 1104–1111. DOI: 10.1603/0022-0493-99.4.1104
Godfrey L.D., Rosenheim J.A., Goodell P.B. 2000. Cotton aphid emerges as major pest in SVJ cotton. California Agriculture 54 (6): 32–34. DOI: 10.3733/ca.v054n06p26
Gonzalez-Mas N., Sanchez-Ortiz A., Valverde-Garcia P., Quesada- Moraga E. 2019. Effects of endophytic entomopathogenic ascomycetes on the life-history traits of Aphis gossypii Glover and its interactions with melon plants. Insects 10 (6): 165. DOI: 10.3390/insects10060165
Grace S.C., Logan B.A. 2000. Energy dissipation and radical scavenging by the plant phenylpropanoid pathway. Philosophical Transactions: Biological Sciences 355 (1402): 1499−1510. DOI: 10.1098/rstb.2000.0710
Gurulingappa P., McGee P.A., Sword G. 2011. Endophytic Lecanicillium lecnii and Beauveria bassiana reduce the survival and fecundity of Aphis gossypii following contact with conidia and secondary metabolites. Crop Protection 30 (3): 349−353. DOI: 10.1016/J.CROPRO.2010.11.017
Gurulingappa P., Sword G.A., Murdoch G., McGee P.A. 2010. Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta. Bio- Control 55 (1): 34–41. DOI: https://doi.org/10.1016/j.biocontrol.2010.06.011
Hermoso de Mendoza A., Belliure B., Carbonell E.A., Real V. 2001. Economic thresholds for Aphis gossypii (Hemiptera: Aphididae) on Citrus clementina. Journal of Economic Entomology 94 (2): 439–444. DOI: https://doi.org/10.1603/0022-0493-94.2.439
Humber R.A. 1997. Fungi: identification. p. 153–185. In: “Manual of Techniques in Insect Pathology” (L.A. Lacey, ed.). Academic Press, London. DOI: https://doi.org/10.1016/B978-012432555-5/50011-7
Ibrahim L., Hamieh A., Ghanem H., Ibrahim S. 2011. Pathogenicity of entomopathogenic fungi from Lebanese soils against aphids, whitefly and non-target beneficial insects. International Journal of Agriculture Sciences 3 (3): 156−164. DOI: 10.9735/0975-3710.3.3.156-164
Ibrahim L., Laham L., Tomma A., Ibrahim S. 2015. Mass production, yield, quality, formulation and efficacy of entomopathogenic Metarhizium anisopliae conidia. British Journal of Applied Sciences and Technology 9 (5): 427−440. DOI: 10.9734/bjast/2015/17882
Ibrahim L., Spackman V.M.T., Cobb A.H. 2001. An investigation of wound healing in sugar beet roots using light and fluorescence microscopy. Annals of Botany 88 (2): 313−320. DOI: https://doi.org/10.1006/anbo.2001.1461
Jaber L.R., Enkerli J. 2016. Effect of seed treatment duration on growth and colonization of Vicia faba by endophytic Beauveria bassiana and Metarhizium brunneum. Biological Control 103: 187–195. DOI: https://doi.org/10.1016/j.biocontrol.2016.09.008
Jaber L.R., Enkerli J. 2017. Fungal entomopathogens as endophytes: can they promote plant growth? Biocontrol Science and Technology 27 (1): 28–41. DOI: https://doi.org/10.1080/09583157.2016.1243227
Jaber L.R., Vidal S. 2010. Fungal endophyte negative effects on herbivory are enhanced on intact plants and maintained in a subsequent generation. Ecological Entomology 35 (1): 25–36. DOI: https://doi.org/10.1111/j.1365-2311.2009.01152.x
Jensen R.E., Enkegaard A., Steenberg T. 2019. Increased fecundity of Aphis fabae on Vicia faba plants following seed or leaf inoculation with the entomopathogenic fungus Beauveria bassiana. PLoS ONE 14 (10): 1−13, e0223616. DOI: https://doi.org/10.1371/journal.pone.0223616
Kabaluk J.T., Ericsson J.D. 2007. Metarhizium anisopliae seed treatment increases yield of field corn when applied for wireworm control. Agronomy Journal 99 (5): 1377−1381. DOI: 10.2134/agronj2007.0017N
Kumar P.K.R., Hemanth G., Niharika P.S., Kolli S.K. 2015. Isolation and identification of soil mycoflora in agricultural fields at Tekkali Mandal in Srikakulam District. International Journal of Advances in Pharmacy, Biology and Chemistry 4 (2): 484−490.
Lacey L.A. 2016. Entomopathogens used as microbial control agents. p. 3−12. In: “Microbial Control of Insect and Mite Pests” (L.A. Lacey, ed.). Amsterdam: Elsevier/Academic Press. DOI: https://doi.org/10.1016/B978-0-12-803527- 6.00001-9
Lee S.B., Milgroom M.G., Taylor J.W. 1988. A rapid, high yield mini-prep method for isolation of total genomic DNA from fungi. Fungal Genetics Newsletter 35: 23–24. DOI: https://doi.org/10.4148/1941-4765.1531
Liao J., Li X., Wong T.Y., Wang J.J., Khor C.C., Tai ES., Aung T., Teo Y.Y., Cheng C.Y. 2014. Impact of measurement error on testing genetic association with quantitative traits. PloS ONE 9 (1): e87044. DOI: https://doi.org/10.1371/journal.pone.0087044
Liao X., Lovett B., Fang W., St. Leger R.J. 2017. Metarhizium robertsii produces indole-3-acetic acid, which promotes root growth in Arabidopsis and enhances virulence to insects. Microbiology 163 (7): 980–991. DOI: 10.1099/mic.0.000494
Lingg A.J., Donaldson M.D. 1981. Biotic and abiotic factors affecting stability of Beauveria bassiana conidia in soil. Journal of Invertebrate Pathology 38 (2): 191−200. DOI: https://doi.org/10.1016/0022-2011(81)90122-1
Lopez D.C., Zhu-Salzman K., Ek-Ramos M.J., Sword G.A. 2014. The entomopathogenic fungal endophytes Purpureocillium lilacinum (formerly Paecilomyces lilacinus) and Beauveria bassiana negatively affect cotton aphid reproduction under both greenhouse and field conditions. PLoS One 9: e103891. DOI: 10.1371/journal.pone.0104342
Maniania N.K., Sithanantham S., Ekesi S., Ampong-Nyarko K., Baumgärtner J., Löhr B., Matoka C.M. 2003. A field trial of the entomogenous fungus Metarhizium anisopliae for control of onion thrips, Thrips tabaci. Crop Protection 22 (3): 553–559. DOI: https://doi.org/10.1016/S0261-2194(02)00221-1
Matallanas B., Lantero E., M’Saad M., Callejas C., Ochando M.D. 2013. Genetic polymorphism at the cytochrome oxidase I gene in mediterranean populations of Batrocera oleae (Diptera: Tephritidae). Applied Entomology 137 (8): 624–630. DOI: https://doi.org/10.1111/jen.12037
McKinnon A.C., Saari S., Moran-Diez M.E., Meyling N.V., Raad M., Glare T.R. 2017. Beauveria bassiana as an endophyte: a critical review on associated methodology and biocontrol potential. BioControl 62: 1–17. DOI: 10.1007/s10526-016-9769-5.
Omkar P.A. 2004. Predaceous coccinellids in India: predatorprey catalogue. Oriental Insects 38 (1): 27–61. DOI: 10.1080/00305316.2004.10417373
Ownley B.H., Dee M.M., Gwinn K. 2008. Effect of conidial seed treatment rate of entomopathogenic Beauveria bassiana 11-98 on endophytic colonization of tomato seedlings and control of Rhizoctonia disease. Phytopathology 98 (6): S118−S118.
Pańka D., Piesik D., Jeske M., Musiał N., Koczwara K. 2013. Production of phenolic compounds by perennial ryegrass (Lolium perenne L.)/Neotyphodium lolii association as a defense reaction towards infection by Fusarium poae and Rhizoctonia solani. p. 124−125. In: “Endophytes for Plant Protection: the State of the Art” (C. Schneider, C. Leifert, F. Feldmann, eds.). Deutsche Phytomedizinische Gesellschaft, Braunschweig.
Pathan A.K., Bond J., Gaskin R.E. 2010. Sample preparation for SEM of plant surfaces. Materials Today 12 (1): 32−43. DOI: 10.1016/S1369-7021(10)70143-7
Perea-Domínguez X.P., Hernández-Gastelum L.Z., Olivas- -Olguin H.R., Espinosa-Alonso L.G., Valdez-Morale M., Medina-Godoy S. 2018. Phenolic composition of tomato varieties and an industrial tomato by-product: free, conjugated and bound phenolics and antioxidant activity. Journal of Food Science and Technology 55 (9): 3453–3461. DOI: https://doi.org/10.1007/s13197-018-3269-9
Pereira R.M., Stimac J.L., Alves S.B. 1993. Soil antagonism affecting the dose − response of workers of the red imported fire ant, Solenopsis invicta, to Beauveria bassiana conidia. Journal of Invertebrate Pathology 61 (2): 156−161. DOI: https://doi.org/10.1006/jipa.1993.1028
Petrini O., Fisher P.J. 1987. Fungal endophytes in Salicornia perennis. Transactions of the British Mycological Society 87 (4): 647−651. DOI: https://doi.org/10.1016/S0007-1536-(86)80109-7
Pineda A., Zheng S.-J., van Loon J.J.A., Pieterse C.M.J., Dicke M. 2010. Helping plants to deal with insects: the role of beneficial soil-borne microbes. Trends in Plant Science 15 (9): 507–514. DOI: https://doi.org/10.1016/j.tplants.2010.05.007
Powell W.A., Klingeman W.E., Ownley B.H., Gwinn K.D. 2009. Evidence of endophytic Beauveria bassiana in seed-treated tomato plants acting as a systemic entomopathogen to larval Helicoverpa zea (Lepidoptera: Noctuidae). Journal of Entomological Science 44 (4): 391−396. DOI: https://doi.org/10.18474/0749-8004-44.4.391
Rajab L., Ahmad M., Gazal I. 2020. Endophytic establishment of the fungal entomopathogen, Beauveria bassiana (Bals.) Vuil., in cucumber plants. Egyptian Journal of Biological Pest Control 30: 143. DOI: https://doi.org/10.1186/s41938-020-00344-8
Raps A., Vidal S. 1998. Indirect effects of an unspecialized endophytic fungus on specialized plant-herbivorous insect interactions. Oecologia 114 (4): 541–547. DOI: 10.1007/s004420050478
Rebijith K.B., Asoka R., Krishna V., Krishna Kumar N.K., Ramamurth V.V. 2012. Development of species-specific markers and molecular differences in mitochondrial and nuclear DNA sequences of Aphis gossypii and Myzus persicae (Hemiptera: Aphididae). Florida Entomologist 95 (3): 674−682. DOI: 10.1653/024.095.0318
Rodriguez R.J., White Jr. J.F., Arnold A.E., Redman R.S. 2009. Fungal endophytes: Diversity and functional roles. New Phytologist 182 (2): 314–330. DOI: http://dx.doi.org/10.1111/j.1469-8137.2009.02773.x
Russo M.L., Pelizza S.A., Cabello M.N., Stenglein S.A., Scorsetti A.C. 2015. Endophytic colonisation of tobacco, corn, wheat and soybeans by the fungal entomopathogen Beauveria bassiana (Ascomycota, Hypocreales). Biocontrol Science and Technology 25 (4): 475−480. DOI: 10.1080/09583157.2014.982511
Saari S., Helander M., Faeth S.H. 2010. The effects of endophytes on seed production and seed predation of tall fescue and meadow fescue. Microbial Ecology 60: 928–934. DOI: https://doi.org/10.1007/s00248-010-9749-8
Saikkonen K., Lehtonen P., Helander M., Koricgeva J., Faeth S.H. 2006. Model systems in ecology: dissecting the endophyte grass literature. Trends in Plant Science 11 (9): 428−433. DOI: 10.1016/j.tplants.2006.07.001
Sánchez-Rodríguez A.R., Del Campillo M.C., Quesada-Moraga E. 2015. Beauveria bassiana: An entomopathogenic fungus alleviates Fe chlorosis symptoms in plants grown on calcareous substrates. Scientia Horticulturae 197: 193–202. DOI: https://doi.org/10.1016/j.scienta.2015.09.029
Sasan R.K., Bidochka M.J. 2012. The insect-pathogenic fungus Metarhezium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. American Journal of Botany 99 (1): 101−107. DOI: 10.3732/ajb.1100136
Schulz B., Boyle C. 2005. Fungal endophyte continuum. Mycological Research 109 (6): 661–686. DOI: https://doi.org/10.1017/S095375620500273X
Shaalan R., Ibrahim L. 2019. Entomopathogenic fungal endophytes: can they colonize cucumber plants? p. 853−860. In: “Book of Proceedings of the IX International Scientific Agriculture Symposium AGROSYM 2018”. 04−07 October 2018, Bosnia and Herzegovina.
Shi X.G., Zhu Y.K., Xia X.M., Qiao K., Wang HY., Wang KY. 2012. The mutation in nicotinic acetylcholine receptor β1 subunit may confer resistance to imidacloprid in Aphis gossypii (Glover). Journal of Food, Agriculture and Environment 10 (2): 1227−1230.
Skinner M., Parker B.L., Kim J.S. 2014. Role of entomopathogenic fungi in integrated pest management. p. 169–191. In: “Integrated Pest Management: Current Concepts and Ecological Perspectives” (D.P. Abrol, ed.). Academic Press, San Diego. DOI: https://doi.org/10.1016/B978-0-12-398529-3.00011-7
Song H., Chen J., Staub J., Simon P. 2010. QTL analyses of orange color and carotenoid content and mapping of carotenoid biosynthesis genes in cucumber (Cucumis sativus L.). Acta Horticulturae 871: 607−614. DOI: 10.17660/ACTAHORTIC.2010.871.83
Stoetzel M.B., Miller G.L., O’Brien P.J., Graves J.B. 1996. Aphids (Homoptera: Aphididae) colonizing cotton in the United States. Florida Entomologist 79 (2): 193−205. DOI: 10.2307/3495817
Tefera T., Vidal S. 2009. Effect of inoculation method and plant growth medium on endophytic colonization of sorghum by the entomopathogenic fungus Beauveria bassiana. BioControl 54: 663−669. DOI: 10.1007/s10526-009-9216-y
Tucker S.L., Talbot N.J. 2001. Surface attachment and pre- -penetration stage development by plant pathogenic fungi. Annual Review of Phytopathology 39: 385–417. DOI: 10.1146/annurev.phyto.39.1.385
Ullrich C.I., Koch E., Matecki C., Schäfer J., Burkl T., Rabenstein F., Kleespies R.G. 2017. Detection and growth of endophytic entomopathogenic fungi in dicot crop plants. Journal für Kulturpflanzen 69 (9): 291–302. DOI: 10.1399/JfK.2017.09.02
Umboh S.D., Salaki C.L., Tulung M., Mandey L.C., Maramis R.T.D. 2016. The isolation and identification of fungi from the soil in gardens of cabbage were contaminated with pesticide residues in subdistrict Modoinding. International Journal of Research in Engineering and Science 4 (7): 25−32.
Vandre W. 2013. Cucumber production in greenhouses. University of Alaska Fairbanks Cooperative Extension Service. Available on: www.uaf.edu/ces
Vega F.E. 2018. The use of fungal entomopathogens as endophytes in biological control: a review. Mycologia 110 (1): 4–30. DOI: https://doi.org/10.1080/00275514.2017.1418578
Vega F.E., Goettel M.S., Blackwell M., Chandler D., Jackson M.A., Keller S., Koike M., Maniania N.K., Monzón A., Ownley B.H. et al. 2009. Fungal entomopathogens: New insights on their ecology. Fungal Ecology 2 (4): 149–159. DOI: https://doi.org/10.1016/j.funeco.2009.05.001
Vega F.E., Meyling N.V., Luangsa-Ard J.J., Blackwell M. 2012. Fungal entomopathogens. p. 171–220. In: “Insect Pathology” 2nd ed. (F.E. Vega, H.K. Kaya, eds.). Academic Press, San Diego. DOI: 10.1016/B978-0-12-384984-7.00006-3
Vega F.E., Posada F., Aime M.C., Pava-Ripolli M., Infante F., Rehner S.A. 2008. Entomopathogenic fungal endophytes. Biological Control 46 (1): 72–82. DOI: https://doi.org/10.1016/j.biocontrol.2008.01.008
Vidal S., Jaber L. 2015. Entomopathogenic fungi as endophytes: plant–endophyte–herbivore interactions and prospects for use in biological control. Current Science 109 (1): 46−54. Vincent C., Goettel M.S., Lazarovits G. (eds.) 2007. Biological Control: A Global Perspective. CAB International/ AAFC, Wallingford, United Kingdom. DOI: 10.1079/9781845932657.0000
Wagner B.L., Lewis L.C. 2000. Colonization of corn, Zea mays, by the entomopathogenic fungus Beauveria bassiana. Applied and Environmental Microbiology 66 (8): 3468−3473. DOI: 10.1128/aem.66.8.3468-3473.2000
White T.J., Bruns T.D., Lee S.B., Taylor J.W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. p. 315–322. In: “PCR Protocols: A Guide to Methods and Applications” (M.A. Innis, D.H. Gelfand, J.J. Sninsky, T.J. White, eds.). Academic Press, San Diego. DOI: http://dx.doi.org/10.1016/B978-0-12-372180-8.50042-1
Wilson D. 1995. Endophyte – the evolution of a term, and clarification of its use and definition. Oikos 73: 274−276. DOI: https://doi.org/10.2307/3545919
Wraight S.P., Inglis G.D., Goettel M.S. 2007. Fungi. p. 223−248. In: “Field Manual of Techniques in Invertebrate Pathology: Application and Evaluation of Pathogens for Control of Insects and other Invertebrate Pest”. 2nd ed. (L.A. Lacey, H.K. Kaya, eds.). Springer, Dordrecht, the Netherlands.
Wu Z.H., Wang T.H., Huang W., Qu Y.B. 2001. A simplified method for chromosome DNA preparation from filamentous fungi. Mycosystema 20 (4): 575–577.
Go to article

Authors and Affiliations

Roshan S. Shaalan
1 2
ORCID: ORCID
Elvis Gerges
3
Wassim Habib
3
Ludmilla Ibrahim
2

  1. Department of Plant Protection, University of Forestry, Sofia, Bulgaria
  2. Department of Plant Protection, Lebanese University, Beirut, Lebanon
  3. Department of Plant Protection, Lebanese Agricultural Research Institute, Lebanon
Download PDF Download RIS Download Bibtex

Abstract

Meloidogyne arenaria belongs to root-knot nematodes (RKNs) which constitute a group of highly polyphagous nematodes causing serious damages to many crop varieties. Maize ( Zea mays) is one of its main hosts. During plant response to RKN infection, many mechanisms are involved. Pathogenesis-related proteins (PRs), which present many functions and enzymatic activities, such as ribonucleases (RNases), antioxidative enzymes, or proteases are involved in these processes. The aim of this study was to describe changes in peroxidase and RNase activities induced in Z. mays during its response to M. arenaria infection. Moreover, proteins potentially responsible for peroxidase activity were indicated. RNase and peroxidase activities were tested on proteins extracted from roots of healthy plants, M. arenaria infected plants, and healthy plants mixed with M. arenaria juveniles, in native polyacrylamide (PAA) gels. Samples were collected from two varieties of maize at four time points. A selected fraction showing peroxidase activity was excised from the gel and analyzed using mass spectrometry (MS) to determine protein factors responsible for enzymatic activity. As a result, the analyzed varieties showed slight differences in their RNase and peroxidase activities. Higher activity was observed in the Tasty Sweet variety than in the Waza variety. There were no significant differences between healthy and infected plants in RNase activities at all time points. This was in contrast to peroxidase activity, which was the highest in M. arenaria-infected plants 15 days after inoculation. On the basis of protein identification in excised gel fractions using MS it can be assumed that mainly peroxidase 12 is responsible for the observed peroxidase activity. Moreover, peroxidase activity may be presented by glutathione-S-transferase as well.
Go to article

Bibliography


Bajaj K., Singh P., Mahajan R. 1985. Changes induced by Meloidogyne incognita in superoxide dismutase, peroxidase and polyphenol oxidase activity in tomato roots. Biochemie und Physiologie der Pflanzen 180: 543−546. DOI: https://doi.org/10.1016/S0015-3796(85)80102-5
Bariola P.A., Green P.J. 1997. Plant ribonucleases. p. 163−190. In: "Ribonucleases: Structures and Functions” (G. D’Alessio, J.F. Riordan, eds). Academic Press, USA. DOI: https://doi. org/10.1016/B978-012588945-2/50006-6
Bartling D., Radzio R., Steiner U., Weiler E.W. 1993. A glutathione S-transferase with glutathione-peroxidase activity from Arabidopsis thaliana: Molecular cloning and functional characterization. European Journal of Biochemistry 216: 579−586. DOI: https://doi.org/10.1111/j.1432-1033.1993.tb18177.x
Blank A., Sugiyama R., Dekker C.A. 1982. Activity staining of nucleolytic enzymes after sodium dodecyl sulfate-polyacrylamide gel electrophoresis: use of aqueous isopropanol to remove detergent from gels. Analytical Biochemistry 120: 267−275. DOI: https://doi.org/10.1016/0003-2697-(82)90347-5
Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248−254. DOI: https://doi.org/10.1016/0003-2697-(76)90527-3
Christensen J.H., Bauw G., Welinder K.G., Van Montagu M., Boerjan W. 1998. Purification and characterization of peroxidases correlated with lignification in poplar xylem. Plant Physiology 118: 125−135. DOI: https://doi.org/10.1104/ pp.118.1.125
Edreva A. 2005. Pathogenesis-related proteins: research progress in the last 15 years. General and Applied Plant Physiology 31: 105−124.
Eisenback J.D., Triantaphyllou H.H. 1991. Root-knot nematodes: Meloidogyne species and races. p. 191−274. In: "Manual of Agricultural Nematology" (W.R. Nickle, ed.). CRC Press, USA. DOI: https://doi.org/10.1201/9781003066576
Elling A.A. 2013. Major emerging problems with minor Meloidogyne species. Phytopathology 103: 1092−1102. DOI: https://doi.org/10.1094/PHYTO-01-13-0019-RVW
Filipenko E., Kochetov A., Kanayama Y., Malinovsky V., Shumny V. 2013. PR-proteins with ribonuclease activity and plant resistance against pathogenic fungi. Russian Journal of Genetics: Applied Research 3: 474−480. DOI: https://doi.org/10.1134/S2079059713060026
Gheysen G., Fenoll C. 2002. Gene expression in nematode feeding sites. Annual Review of Phytopathology 40: 191−219. DOI: https://doi.org/10.1146/annurev.phyto.40.121201.093719
Hiraga S., Sasaki K., Ito H., Ohashi Y., Matsui H. 2001. A large family of class III plant peroxidases. Plant and Cell Physiology 42: 462−468. DOI: https://doi.org/10.1093/pcp/ pce061
Holbein J., Grundler F.M., Siddique S. 2016. Plant basal resistance to nematodes: an update. Journal of Experimental Botany 67: 2049−2061. DOI: https://doi.org/10.1093/jxb/ erw005
Hussey R. 1973. A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Disease Reporter 57: 1025−1028.
Jain D., Khurana J.P. 2018. Role of pathogenesis-related (PR) proteins in plant defense mechanism. p. 265−281. In: "Molecular Aspects of Plant-Pathogen Interaction." (A. Singh, I.K. Singh, eds.). Springer, Singapore. DOI: https://doi.org/10.1007/978-981-10-7371-7
Kyndt T., Nahar K., Haegeman A., De Vleesschauwer D., Höfte M., Gheysen G. 2012. Comparing systemic defencerelated gene expression changes upon migratory and sedentary nematode attack in rice. Plant Biology 14: 73−82. DOI: https://doi.org/10.1111/j.1438-8677.2011.00524.x
Mahantheshwara B., Nayak D., Patra M.K. 2019. Protein estimation through biochemical analysis in resistant and susceptible cultivars of cowpea against infection by root-knot nematode, Meloidogyne incognita. Journal of Entomology and Zoology Studies 7 (4): 1191−1193.
MlÝčkovß K., Luhovß L., Lebeda A., Mieslerovß B., Peč P. 2004. Reactive oxygen species generation and peroxidase activity during Oidium neolycopersici infection on Lycopersicon species. Plant Physiology and Biochemistry 42: 753−761. DOI: https://doi.org/10.1016/j.plaphy.2004.07.007
Mohanty K., Ganguly A., Dasgupta D. 1986. Development of peroxidase (EC 1.11. 1.7) activities in susceptible and resistant cultivars of cowpea inoculated with the root-knot nematode, Meloidogyne incognita. Indian Journal of Nematology 16: 252−256.
Mohsenzadeh S., Esmaeili M., Moosavi F., Shahrtash M., Saffari B., Mohabatkar H. 2011. Plant glutathione S-transferase classification, structure and evolution. African Journal of Biotechnology 10: 8160−8165. DOI: https://doi.org/10.5897/AJB11.1024
Przybylska A., Kornobis F., Obrępalska-Stęplowska A. 2018. Analysis of defense gene expression changes in susceptible and tolerant cultivars of maize (Zea mays) upon Meloidogyne arenaria infection. Physiological and Molecular Plant Pathology 103: 78−83. DOI: https://doi.org/10.1016/j.pmpp.2018.05.005
Przybylska A., Obrępalska-Stęplowska A. 2020. Plant defense responses in monocotyledonous and dicotyledonous host plants during root-knot nematode infection. Plant and Soil 451: 239–260. DOI: https://doi.org/10.1007/s11104-020-04533-0
Siddiqui Z., Husain S. 1992. Response of twenty chickpea cultivars to Meloidogyne incognita race 3. Nematologia Mediterranea 20: 33−36.
Singh N.K., Paz E., Kutsher Y., Reuveni M., Lers A. 2020. Tomato T2 ribonuclease LE is involved in the response to pathogens. Molecular Plant Pathology 21: 895−906. DOI: https:// doi.org/10.1111/mpp.12928
Veronico P., Paciolla C., Pomar F., De Leonardis S., García- -Ulloa A., Melillo M.T. 2018. Changes in lignin biosynthesis and monomer composition in response to benzothiadiazole and root-knot nematode Meloidogyne incognita infection in tomato. Journal of Plant Physiology 230: 40−50. DOI: https://doi.org/10.1016/j.jplph.2018.07.013
Go to article

Authors and Affiliations

Arnika Przybylska
1
ORCID: ORCID

  1. Department of Molecular Biology and Biotechnology, Institute of Plant Protection − National Research Institute, Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

Pepper yellow leaf curl Thailand virus (PepYLCTHV) causes leaf curl disease in chili production regions of the tropics and subtropics. Information on PepYLCTHV disease severity and resistance in chili pepper is still limited in Thailand. This study reports PepYLCTHV disease severity through graft inoculation and selection of single resistant plants for use in a chili breeding program. Twenty-one chili genotypes consisting of the local cultivar (5) collected from Thailand, breeding lines (9) developed at Khon Kaen University (KKU), Thailand and improved lines (7) obtained from the World Vegetable Center, Taiwan were used in this study. Forty-five-day-old seedlings of all the genotypes were graft inoculated with PepYLCTHV in a randomized complete block design (RCBD) with three replications and 10 plants per replication and kept in a plastic net house. Disease symptoms were scored at 20, 27, 34, 41 48, and 55 days after graft/inoculation (DAI). Disease severity was visually recorded using 0−5 scores. Results showed that the disease severity of 21 chili genotypes significantly differed at 48 days after grafting. High resistance and stability were shown by 9853-123 genotypes. Two genotypes, PSP11-7 and PSP11-10-1, showed resistant reaction with disease severity scores of 1.9 and 1.8, respectively. However, among 21 chili genotypes or 630 grafted plants, 302 plants were successfully grafted inoculated plants. Therefore, from the results of this work, highly resistant plants (69 single plants) can be selected, selfed and advanced for breeding.
Go to article

Bibliography


Anaya-López J.L., Torres-Pacheco I., González-Chavira M., Garzon-Tiznado J.A., Pons-Hernandez J.L. 2003. Resistance to geminivirus mixed infections in mexican wild peppers. Journal American Society Horticultural Science 38 (2): 251–255. DOI: https://doi.org/10.21273/HORTSCI.38.2.251
Barchenger D.W., Jeeatid N., Lin S.W., Wang Y.W., Lin T.H., Chan Y.L., Kenyon L. 2019. A novel source of resistance to Pepper yellow leaf curl Thailand virus (PepYLCThV) (Begomovirus) in chile pepper. Journal American Society Horticultural Science 54 (12): 2146−2149. DOI: https://doi.org/10.21273/HORTSCI14484-19
Chiemsombat P., Srikamphung B., Yule S., Srinivasan R. 2018. Begomoviruses associated to pepper yellow Leaf curl disease in Thialand. Journal of Agricultural Research 3 (7): 000183. Food and Agriculture Organization. 2017. Agricultural Production: Primary crops. Available on: http://apps.fao.org. [Accessed: 25 January 2020]
Kumar R., Rai N., Kakpale N. 1999. Field reaction of some chilli genotypes for leaf curl virus in Chhattisgarh region of India. The Orissa Journal of Horticulture 27: 100−102. DOI: https://doi.org/10.18782/2320-7051.5471
Kumar S., Kumar S., Singh M., Singh A.K., Rai M. 2006. Identification of host plant resistant to pepper leaf curl virus in chilli (Capsicum species). Scientia Horticulturae 110: 359−361. DOI: https://doi.org/10.1016/j.scienta.2006.07.030
Kumar S., Kumar R., Kumar S., Singh A.K., Singh M., Rai A.B., Rai A.B. 2011. Incidence of leaf curl disease on capsicum germplasm under field conditions. Indian Journal of Agricultural Sciences 81: 187−189.
Mishra M.D., Raychaudhuri S.P., Jha A. 1963. Virus causing leaf curl of chilli (Capsicum annuum L.). International Journal of Microbiology 3: 73–76.
Rai V.P.R., Kumar S., Singh P., Kumar S., Singh M., Rai M. 2014. Monogenic recessive resistant to pepper by leaf curl virus in an interspecific cross of Capsicum. Scientia Horticulturae 172: 34−38. DOI: https://doi.org/10.1016/j.scienta.2014.03.039
Sakata J.J., Shibuya Y., Sharma P., Ikegami M. 2008. Strains of a new bipartite begomovirus, Pepper yellow leaf curl Indonesia virus, in leaf-curl-diseased tomato and yellow-veindiseased ageratum in Indonesia. Archives of Virology 153 (12): 2307−2313. DOI: https://doi.org/10.1007/s00705-008-0254-z
Sangsotkaew Y., Jeeartid N., Siri N., Thummabenjapone P., Chatchawankanphanich O., Phuangrat B., Techawongstien S. 2018. Phenotypic responses of putative resistance chili cultivars infected by PepLCV with viruliferous whitefly transmission. Acta Horticulturae 67. DOI: https://doi.org/10.18690/978-961-286-045-5.54.
Shih S.L., Tsai W. S., Lee L.M., Wang J.T., Green S.K., Kenyon L. 2010. First report of tomato yellow leaf curl Thailand virus associated with pepper leaf curl disease in Taiwan. Plant Disease 94 (5): 637. DOI: https://doi.org/10.1094/PDIS-94-5-0637B
Srivastava A., Mangal M., Saritha R.K., Kalia P. 2017. Screening of chilli pepper (Capsicum spp.) lines for resistance to the Begomovirus causing chili leaf curl disease in India. Journal of Crop Protection 100: 177–185. DOI: https://doi.org/10.1016/j.cropro.2017.06.015
Tsai W., Shih S., Green S., Rauf A., Hidayat S., Jan F.J. 2006. Molecular characterization of Pepper yellow leaf curl Indonesia virus in leaf curl and yellowing diseased tomato and pepper in Indonesia. Plant Disease 90 (2): 247−247. DOI: https://doi.org/10.1094/PD-90-0247B
Tsai W.S., Shih S.L., Kenyon L., Green S.K., Jan F.J. 2011. Temporal distribution and pathogenicity of the predominant tomato-infecting begomoviruses in Taiwan. Plant Pathology 60: 787−799. DOI: https://doi.org/10.1111/j.1365-3059.2011.02424.x
Verlaan M.G., Hutton S.F., Ibrahem R.M., Kormelink R., Visser R.G.F., Scott J.W., Edwards J.D., Bai Y. 2013. The tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-Class RNA–Dependent RNA polymerases. PLoS Genetics 9 (3): e1003399. DOI: https://doi.org/10.1371/journal.pgen.1003399
Zehra S.B., Ahmad A., Sharma A., Sofi S., Lateef A., Bashir Z., Husain M., Rathore J.P. 2017. Chilli leaf curl virus an emerging threat to chilli in India. Indian Journal of Pure and Applied Biosciences 5 (5): 404−414.
Go to article

Authors and Affiliations

Patcharaporn Suwor
1
ORCID: ORCID
Tawatchai Masirayanan
1
Hathairat Khingkumpungk
1
Wen Shi Tsai
2
Kanjana Saetiew
1
Suchila Techawongstien
3
Sanjeet Kumar
4
Somsak Kramchote
1

  1. Plant Production of Technology, School of Agricultural Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
  2. Department of Plant Medicine, College of Agriculture, National Chiayi University, Chiayi, Taiwan
  3. Department of Plant Science and Agricultural Resources, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
  4. Pepper Breeding Section, Plant Geneticist and Breeder (Independent), India
Download PDF Download RIS Download Bibtex

Abstract

Sugar beet is a major sugar yielding crop in the states of Minnesota (MN) and North Dakota (USA). Sugar beet root samples collected from Moorhead, MN in September 2020 had typical rot symptoms along with whitish mycelia growth and blackish sclerotia on the external surface of the root. Pure, sterile cultures were obtained from infected roots. Sclerotinia sclerotiorum was identified based on morphological features and further confirmed molecularly by sequencing of the Internal Transcribed Spacers (ITS) region and matching homology with reported ITS of the fungus. Pathogenicity of S. sclerotiorum was confirmed through mycelial inoculation of seeds and roots under laboratory and greenhouse conditions. Inoculated seeds showed a range of symptoms that included pre- and post-emergence damping off, wilting, black discoloration of roots, constricted collar regions and stunted seedling growth. Under laboratory conditions, roots were artificially wounded using a cork borer and inoculated by mycelial plug. This resulted in noticeable root decay and growth of whitish, cottony mycelia and sclerotia externally. Transverse sections of the diseased root showed brown to black discoloration and rotting of internal tissue. Root inoculation of 4-week old sugar beet plants was achieved by depositing pathogen colonized barley grains near roots in the greenhouse, resulting in brown to black lesions and necrosis of root tissue when evaluated at 28 days post inoculation. The S. sclerotiorum was re-isolated from inoculated roots showing infection and identical pure isolates of the pathogen were recovered from field samples. These findings could be useful for sugar beet growers in Minnesota, allowing better management of this pathogen under field and storage conditions before its widespread future occurrence.
Go to article

Bibliography


Alexopoulos C.J., Mims C.W., Blackwell M. 1996. Introductory Mycology. 4th ed. John Wiley, New York, 880 pp. Abawi G.S., Grogan R.G. 1979. Epidemiology of diseases caused by Sclerotinia species. Phytopathology 69: 899–904. DOI: http://dx.doi.org/10.1094/Phyto-69-899
Adams P.B., Ayers W.A. 1979. Ecology of Sclerotinia species. Phytopathology 69: 896–898. DOI: https://doi.org/10.1094/ Phyto-69-896
Bell A.A., Wheeler M.H. 1986. Biosynthesis and functions of fungal melanins. Annual Review of Phytopathology 24: 411–451. DOI: https://doi.org/10.1146/annurev.py.24.090186.002211
Berkeley G.H. 1994. Root-rots of certain non-cereal crops. Botanical Review 10 (2): 67−123. DOI: https://doi.org/10.1007/ BF02861087
Boland G.J., Hall R. 1994. Index of plant hosts of Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology 16: 93−108. DOI: https://doi.org/10.1080/07060669409500766
Bolton M.V., Thomma B.P.H.J., Nelson B.D. 2006. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology 7: 1−16. DOI: https://doi.org/10.1111/j.1364-3703.2005.00316.x.
Bradley C.A., Henson R.A., Porter P.M., LeGare D.G., del Rio L.E., Khot S.D. 2006. Response of canola cultivar to Sclerotinia sclerotiorum in controlled and field environments. Plant Disease 90: 215−219. DOI: https://doi.org/10.1094/PD-90-0215
Bradley C.A., Lamey H.A. 2005. Canola disease situation in North Dakota, U.S.A. p. 1993−2004. In: Proceedings of the 14th Australian Research Assembly on Brassicas, Port Lincoln, Australia, 3−7 October 2005.
Brown J.G., Butler K.D. 1936. Sclerotiniose of lettuce in Arizona. p. 475−506. Agriculture Experiment Station Bulletin 63, 506 pp. Available on: https://repository.arizona.edu/ handle/10150/199475 [Accessed: 8 December 2021]
Buttner G., Pfahler B., Marlander B. 2004. Greenhouse and field techniques for testing sugarbeet for resistance to Rhizoctonia root and crown rot. Plant Breeding 123: 158−166. DOI: https://doi.org/10.1046/j.1439-0523.2003.00967.x
Cook G.E., Steadman J.R., Boosalis M.G. 1975. Survival of Whetzelinia sclerotiorum and initial August 31, 1976 infection of dry edible beans. Phytopathology 65: 250−255. DOI: h ttps://doi.org/10.1094/Phyto-65-250
del Rio L.E., Martinson C.A., Yang X.B. 2002. Biological control of Sclerotinia stem rot of soybean with Sporidesmium sclerotivorum. Plant Disease 86: 999−1004. DOI: https://apsjournals.apsnet.org/doi/pdf/10.1094/PDIS.2002.86.9.999
del Rio L.E., Venette J.R., Lamey H.A. 2004. Impact of white mold incidence on dry bean yield under nonirrigated conditions. Plant Disease 88: 1352−1356. DOI: https://apsjournals. apsnet.org/doi/pdf/10.1094/PDIS.2004.88.12.1352
del Rio L.E., Bradley C.A., Henson R.A., Endres G.J., Hanson B.K., McKay K., Halvorson M., Porter P.M., Le Gare D.G., Lamey H.A. 2007. Impact of Sclerotinia stem rot on yield of canola. Plant Disease 91: 191−194. DOI: https://apsjournals.apsnet.org/doi/pdf/10.1094/PDIS-91-2-0191
Fernando W.G.D., Nakkeeran S., Zhang, Y., Savchuk, S. 2007. Biological control of Sclerotinia scleotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Protection 26: 100−107. DOI: https://doi.org/10.1016/j.cropro.2006.04.007
Huang H.C., Hoes J.A. 1980. Importance of plant spacing and sclerotial position to development of Sclerotinia wilt of sunflower. Plant Disease 64: 81−84. DOI: https://doi.org/10.1094/PD-64-81
Inglis G.D., Boland G.J. 1990. The microflora of bean and rapeseed petals and the influence of the microflora of bean petals on white mold. Canadian Journal of Plant Pathology 12: 129–134. DOI: https://doi.org/10.1080/07060669009501015
Jacobson B.J. 2006. Root rot diseases of sugar beet. International symposium on sugar beet protection. Proceedings for Natural Sciences 110: 9–19.
Khan M.F.R. 2017. Managing common root diseases of sugar beet. NDSU Sugar beet extension. Available on: https://www.ag.ndsu.edu/publications/crops/management-ofrhizoctonia- root-and-crown-rot-of-sugar-beets [Accessed: 10 December 2021]
Khan M.F.R., Bhuiyan M.Z.R., Chittem K., Shahoveisi F., Haque M.E., Liu Y., Hakk P., Solanki S., del Rio L.E., La- Plante G. 2020. First report of Sclerotinia sclerotiorum causing leaf blight in sugar beet (Beta vulgaris) in North Dakota, U.S.A. Plant Disease 104 (4): 1258−1258. DOI: https://doi.org/10.1094/PDIS-11-19-2304-PDN
Khan M.F.R. 2021. 2021 Sugar beet production guide. North Dakota State University Extension. Available on: https://www.ag.ndsu.edu/publications/crops/sugarbeet-production-guide [Accessed: 10 December 2021]
Kohn L.M. 1979. A monographic revision of the genus Sclerotinia. Mycotaxon 9 (2): 365–444.
Noor A., Khan M.F.R. 2014. Efficacy and safety of mixing azoxystrobin and starter fertilizers for controlling Rhizoctonia solani in sugar beet. Phytoparasitica 43: 51−55. DOI: https://doi.org/10.1007/s12600-014-0416-3
Peltier A.J., Bradley C.A., Chilvers M.I., Malvick D.K., Mueller D.S., Wise K.A., Esker P.D. 2012. Biology, yield loss and control of Sclerotinia stem rot of soybean. Journal of Integrated Pest Management 3 (2): 1–7. DOI: https://doi.org/10.1603/IPM11033
Purdy L.H. 1979. Sclerotinia sclerotiorum: History, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology 69: 875−880. DOI: https://doi.org/10.1094/Phyto-69-875
Qin L., Fu Y., Xie J., Cheng J., Jiang D., Li G., Huang J. 2011. A nested-PCR method for rapid detection of Sclerotinia sclerotiorum on petals of oilseed rape (Brassica napus). Plant Pathology 60: 271−277. DOI: https://doi.org/10.1111/j.1365-3059.2010.02372.x
Sambrook J., Russell D. 2012. Molecular cloning: a laboratory manual. 4th ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2000 pp.
Steadman J.R., Maier C.R., Schwartz H.F., Kerr E.D. 1975. Pollution of surface irrigation waters by plant pathogenic organisms. Water Resource Bulletin 11: 796−804. DOI: https://doi.org/10.1111/j.1752-1688.1975.tb00731.x.
Turkington T.K., Morrall R.A.A., Gugel R.K. 1993. Use of petal infestation to forecast Sclerotinia stem rot of canola: The influence of inoculums variation over the flowering period and canopy density. Phytopathology 83: 682−689. DOI: https://doi.org/10.1094/Phyto-83-682.
Underwood W., Misar C.G., Block C.C., Gulya T.J., Talukder Z.I., Hulke B.S., et al. 2020. A greenhouse method to evaluate sunflower quantitative resistance to basal stalk rot caused by Sclerotinia sclerotiorum. Plant Disease 105 (2). DOI: https://doi.org/10.1094/PDIS-08-19-1790-RE USDA. 2016. National Sclerotinia Research Initiative Strategic Plan for 2017 to 2021. 12 pp. Available on: https://www.ars.usda.gov/ARSUserFiles/30000000/WhiteMoldResearch/SIStrategic- PLan_%202017-2021_v1_0_Jan16.pdf [Accessed: 18 November 2021]
White T.J., Bruns T.D., Lee S.B., Taylor J.W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. p. 315−322. In: “PCR Protocols: A Guide to Methods and Applications” (M.A. Innis, D.H. Gelfand, J.J. Sninsky, T.J. White, eds.). Academic Press, New York. DOI: http://dx.doi.org/10.1016/B978-0-12-372180-8.50042-1
Willetts H.J., Wong J.A. 1980. The biology of Sclerotinia sclerotiorum, S. trifoliorum, and S. minor with emphasis on specific nomenclature. The Botanical Review 46: 101–165. DOI: https://doi.org/10.1007/BF02860868.
Workneh, F., Yang X.B. 2000. Prevalence of Sclerotinia stem rot of soybeans in the north-central United States in relation to tillage, climate, and latitudinal positions. Phytopathology 90: 1375–1382. DOI: https://doi.org/10.1094/ PHYTO.2000.90.12.1375
Wu B.M., Subbarao KV. 2008. Effects of soil temperature, moisture and burial depths on carpogenic germination of Sclerotinia sclerotiorum and S. minor. Phytopathology 98: 1144–1152. DOI: https://doi.org/10.1094/PHYTO-98-10-1144
Go to article

Authors and Affiliations

Md. Ziaur Rahman Bhuiyan
1
ORCID: ORCID
Dilip K. Lakshman
2
ORCID: ORCID
Luis E. Del Rio Mendoza
1
ORCID: ORCID
Presley Mosher
3
ORCID: ORCID
Mohamed F.R. Khan
1 4
ORCID: ORCID

  1. Plant Pathology, North Dakota State University, Fargo, USA
  2. Sustainable Agricultural Systems Laboratory, USDA/ARS, Beltsville, MD, USA
  3. Plant Diagnostic Lab, North Dakota State University, Fargo, USA
  4. Plant Pathology, University of Minnesota, Fargo, USA
Download PDF Download RIS Download Bibtex

Abstract

Banana is the major fruit crop produced in Ethiopia. Since Cucumber mosaic virus (CMV) is one of the most devastating plant viruses infecting banana, the present study was undertaken to survey and identify CMV strains infecting banana plants in Ethiopia. Dot immune-binding assay (DIBA) and reverse transcription-polymerase chain reaction (RT-PCR) revealed the presence of CMV in all of the symptomatic samples tested. The results of sequence and phylogenetic analysis revealed that the isolate under study was a CMV isolate from the IB subgroup. Multiple sequence alignment revealed a three nucleotide sequence variation that could be used to distinguish CMV subgroups. Selection pressure analysis showed the CMV-RNA1 region undergoing positive selection pressure. Tajima`s test of neutrality revealed a positive value of 0.86468 indicating CMV population contraction. To the best of our knowledge, this is the first report and molecular characterization of CMV IB subgroup isolate infecting banana plants in Ethiopia.
Go to article

Bibliography


Basavaraj S., Rangaswamy K.T., Bhagyashree M. 2017. Molecular characterization of CMV infecting banana from Karnataka based on complete coat protein gene sequence. International Journal of Current Microbiology and Applied Sciences 6 (11): 3758–3763. DOI: https://doi.org/10.20546/ ijcmas.2017.611.440
Bujarski J.J. 2021. Bromoviruses (Bromoviridae). p. 260–267. “Encyclopedia of Virology” 4th ed. (D.H. Bamford, M. Zuckerman, eds.). Academic Press, Oxford. DOI: https://doi.org/10.1016/B978-0-12-809633-8.21563-X
Canto T., Palukaitis P. 2001. A Cucumber mosaic virus (CMV) RNA 1 transgene mediates suppression of the homologous viral RNA 1 constitutively and prevents CMV entry into the phloem. Journal of Virology 75 (19): 9114–9120. DOI: https://doi.org/10.1128/JVI.75.19.9114-9120.2001
Chou C.N., Chen C.E., Wu M.L., Su H.J., Yeh H.H. 2009. Biological and molecular characterization of Taiwanese isolates of Cucumber mosaic virus associated with banana mosaic disease. Journal of Phytopathology 157 (2): 85–93. DOI: https://doi.org/10.1111/j.1439-0434.2008.01455.x
Domingo E., Holland J.J. 1994. Mutation rates and rapid evolution of RNA viruses. p. 161–184. In: “The Evolutionary Biology of Viruses” (S.S. Morse, ed.). Raven Press, New York.
Doolittle S.P. 1916. A new infectious mosaic disease of cucumber. Phytopathology 6: 145–147.
Garcia-Arenal F., Palukaitis P. 2008. Cucumber mosaic virus. Desk encyclopedia of plant and fungal virology. p. 171–176. In: “Desk Encyclopedia of Plant and Fungal Virology” (B.W.J. Mahy, M.H.V. Van Regenmortel, eds.). Academic Press-Elsevier, Oxford, United Kingdom.
Garcia-Arenal F., Fraile A. 2011. Population dynamics and genetics of plant infection by viruses. p. 263–281. In: ”Recent Advances in Plant Virology” (C. Caranta, M.A. Aranda, M. Tepfer, J.J. Lopez-Moye, eds.). Caister Academic Press, Norfolk, United Kingdom.
Gorbalenya A.E., Koonin E.V., Donchenko A.P., Blinov V.M. 1989. Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Research 17 (12): 4713–4730. DOI: https://doi.org/10.1093/nar/17.12.4713
Hampton R.O., Francki R.I.B. 1992. RNA-1 dependent seed transmissibility of cucumber mosaic virus in Phaseolus vulgaris. Phytopathology 82 (2): 127–130.
Kang W.H., Seo J.K., Chung B.N., Kim K.H., Kang B.C. 2012. Helicase domain encoded by Cucumber mosaic virus RNA1 determines systemic infection of Cmr1 in pepper. PLoS One 7 (8): e43136. DOI: https://doi.org/10.1371/journal.pone.0043136
Kebede Y., Majumder S. 2020. Molecular detection and first report of Cucumber mosaic virus infecting ‘Cavendish’ banana plants in Ethiopia. Journal of Plant Disease and Protection 127: 417–420. DOI: https://doi.org/10.1007/s41348-020-00315-z
Khan S., Jan A.T., Aquil B., Mohd Q., Haq R. 2011. Coat protein gene based on characterization of cucumber mosaic virus isolates infecting banana in India. Journal of Phytology 3: 94–101.
Kim M.K., Seo J.K., Kwak H.R., Kim J.S., Kim K.H., Cha B.J., Choi H.S. 2014. Molecular genetic analysis of Cucumber mosaic virus populations infecting pepper suggests unique patterns of evolution in Korea. Phytopathology 104 (9): 993–1000. DOI: https://doi.org/10.1094/PHYTO-10-13-0275-R
Kumar A., Hanson J., Jones C.S., Assefa Y., Mulatu F. 2020. Screening and characterization of virus causing yellow leaf disease of Tephrosia in Ethiopia. Australasian Plant Pathology 49: 447–450. DOI: https://doi.org/10.1007/s13313-020-00717-5
Kumari R., Bhardwaj P., Singh L., Zaidi A.A., Hallan V. 2013. Biological and molecular characterization of Cucumber mosaic virus subgroup II isolate causing severe mosaic in cucumber. Indian Journal of Virology 24 (1): 27–34. DOI: 10.1007/s13337-012-0125-9
Lakshman D.K., Gonsalves D. 1985. Genetic analyses of two large-lesion isolates of Cucumber mosaic virus. Phytopathology 75 (7): 758–762.
Leach J.E., Vera Cruz C.M., Bai J., Leung H. 2001. Pathogen fitness penalty as a predictor of durability of disease resistance genes. Annual Review of Phytopathology 39 (1): 187–224. DOI: https://doi.org/10.1146/annurev.phyto.39.1.187
Liu Y.Y., Yu S.L., Lan Y.F., Zhang C.L., Hou S.S., Li X.D., Zhu X.P. 2009. Molecular variability of five Cucumber mosaic virus isolates from China. Acta Virologica 53 (2): 89–97. DOI: 10.4149/av_2009_02_89
Martin D.P., Murrell B., Golden M., Khoosal A., Muhire B. 2015. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evollution 1 (1). Available on: https:// doi.org/10.1093/ve/vev003 [Accessed: 10 June 2020]
Nouri S., Arevalo R., Falk B.W., Groves R.L. 2014. Genetic structure and molecular variability of Cucumber mosaic virus isolates in the United States. PLoS One 9 (5): e96582. DOI: https://doi.org/10.1371/journal.pone.0096582
Palukaitis P., Garcia-Arenal F. 2003. Cucumoviruses. Advances in Virus Research 62: 241–323. DOI: 10.1016/s0065-3527-(03)62005-1
Palukaitis P., Roossinck M.J., Dietzgen R.G., Francki R.I.B. 1992. Cucumber mosaic virus. Advances in Virus Research 41: 281–348. DOI: http://dx.doi.org/10.1016/s0065-3527-(08)60039-1
Prince W.C. 1934. Isolation and study of some yellow strains of Cucumber mosaic virus. Phytopathology 24: 743–761.
Roossinck M.J., Zhang L., Hellwald K.H. 1999. Rearrangements in the 5’ nontranslated region and phylogenetic analyses of cucumber mosaic virus RNA 3 indicate radial evolution of three subgroups. Journal of Virology 73 (8): 6752–6758. DOI: https://doi.org/10.1128/jvi.73.8.6752-6758.1999
Roossinck M.J. 1997. Mechanisms of plant virus evolution. Annual Review of Phytopathology 35 (1): 191–209. DOI: https://doi.org/10.1146/annurev.phyto.35.1.191
Roossinck M.J. 2001. Cucumber mosaic virus, a model for RNA virus evolution. Molecular Plant Pathology 2 (2): 59–63. DOI: https://doi.org/10.1046/j.1364-3703.2001.00058.x
Roossinck M.J., Palukaitis P. 1990. Rapid induction and severity of symptoms in zucchini squash (Cucurbita pepo) map to RNA 1 of Cucumber mosaic virus. Molecular Plant-Microbe Interactions 3 (1): 188–192. DOI: 10.1094/MPMI-3-188
Rozanov M.N., Koonin E.V., Gorbalenya A.E. 1992. Conservation of the putative methyltransferase domain: a hallmark of the ‘Sindbis-like’supergroup of positive-strand RNA viruses. Journal of General Virology 73 (8): 2129–2134. DOI: https://doi.org/10.1099/0022-1317-73-8-2129
Rozas J., Ferrer-Mata A., Sanchez-DelBarrio J.C., Guirao- -Rico S., Librado P., Ramos-Onsins SE, Sanchez-Gracia A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution 34 (12): 3299–3302. DOI: https://doi.org/10.1093/molbev/msx248
Rybicki E.P. 2015. A top ten list for economically important plant viruses. Archives of Virology 160 (1): 17–20. DOI: 10.1007/s00705-014-2295-9
Seo J.K., Kwon S.J., Choi H.S., Kim K.H. 2009. Evidence for alternate states of Cucumber mosaic virus replicase assembly in positive-and negative-strand RNA synthesis. Virology 383 (2): 248–260. DOI: https://doi.org/10.1016/j.virol.2008.10.033
Simon A.E., Bujarski J.J. 1994. RNA-RNA recombination and evolution in virus-infected plants. Annual Review of Phytopathology 32 (1): 337–362.
Zitter T.A., Murphy J.F. 2009. The plant health instructor: Cucumber mosaic virus. American Phytopathological Society. DOI: 10.1094/PHI-I-2009-0518-01 [Accessed: 25 July 2020]
Go to article

Authors and Affiliations

Yohanis Kebede
1
Shahana Majumder
2
ORCID: ORCID

  1. Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh, India
  2. Department of Botany, Mahatma Gandhi Central University, Bihar, India
Download PDF Download RIS Download Bibtex

Abstract

Fusarium wilt is one of the most severe diseases of chickpea in the major growing areas of chickpea production in western Iran. To identify Fusarium spp. associated with chickpea plants showing symptoms of yellowing and wilting, 58 chickpea fields were sampled and 106 Fusarium spp. isolates were obtained from six different regions of Kermanshah Province in western Iran during 2018 and 2019 crop seasons. Thirty-six isolates obtained from stem or lower stem tissues were selected for pathogenicity, morphological and molecular identification using polymease chain reaction species-specific primers. Eleven isolates of Fusarium spp. were selected for sequence analyzing the translation elongation factor 1-α (EF-1α), and β-tubulin gene regions. Phylogenetic analysis of concatenated DNA sequences of both gene regions of these isolates plus other taxa revealed that 11 Fusarium spp. isolates were clustered into five distinct groups. Based on the results of morphological and molecular identification five Fusarium species were identified. Pathogenicity tests showed that F. oxysporum f. sp. ciceris and F. redolens isolates had the highest disease incidence on JG–62 and Bivenij cvs. and F. hostae, F. equiseti and F. acuminatum isolates had the lowest disease incidence. No sign of vascular discoloration was observed in longitudinal or transverse sections of chickpea plants affected by F. redolens isolates. Instead, brown to black necrosis was observed on the surface of tap-roots and crowns. No correlation was found between geographical distribution and pathogenicity of isolates. This is the first report of morphological, molecular and pathogenicity characteristics of F. redolens and F. hostae isolated from chickpea stems or lower stems in Iran.
Go to article

Bibliography

polymorphic DNA (RAPD). European Journal of Plant Pathology 107: 237–248. DOI: https://doi.org/10.1023/A:1011294204630
Jendoubi W., Bouhadida M., Boukteb A., Beji M., Kharrat M. 2017. Fusarium wilt affecting chickpea crop. Agriculture 7 (23): 1–16. DOI: https://doi.org/10.3390/agriculture7030023
Leslie J.F., Zeller K.A., Summerell B.A. 2001. Icebergs and species in populations of Fusarium. Physiological and Molecular Plant Pathology 59: 107–117. DOI: 10.1006/pmpp.2001.035
Leslie J.F., Summerell B.A. 2006. The Fusarium laboratory manual. Ames, Iowa: Blackwell Publishing, USA, 388 pp.
Manuchehri A., Mesri A. 1966. Fusarium wilt of chickpea. Iranian Journal of Plant Pathology 3 (3): 1–11.
Mishra P.K., Fox R.T.V., Culham A. 2003. Development of a PCR based assay for rapid and reliable identification of pathogenic Fusaria. FEMS Microbiology Letters 218 (2): 329–332. DOI: https://doi.org/10.1111/j.1574-6968.2003.tb11537.x
Mohammadi H., Banihashemi Z. 2005. Distribution, pathogenicity and survival of Fusarium spp. the causal agents of chickpea wilt and root rot in the Fars province of Iran. Iranian Journal of Plant Pathology 41 (4): 687–708.
Navas-Cortes J.A., Alcala-Jimenez A.R., Hau B., Jimenez- -Diaz R.M. 2000. Influence of inoculum density of race 0 and 5 of Fusarium oxysporum f. sp. ciceris on development of Fusarium wilt in chickpea cultivars. European Journal of Plant Pathology 106: 135–146. DOI: https://doi.org/10.1023/A:1008727815927
Nene Y.L., Haware M.P. 1980. Screening chickpea for resistance to wilt. Plant Disease 64: 379–380.
Nelson P.E., Toussoun T.A., Marasas W.F.O. 1983. Fusarium Species: An Illustrated Manual for Identification. Pennyslvania State University Press, University Park, USA, 193 pp.
Nourollahi K.H., Aliaran A., Younesi H. 2017. Genetic diversity of Fusarium oxysporum f. sp. ciceris isolates causal agent of chickpea wilt in Kermanshah province using microsatellite markers. Novel Genetic 11 (4): 605–615.
O’Donnell K., Cigelnik E. 1997. Two divergent intragenomic rDNA ITS2 types within a monophyletic. Molecular Phylogenetics and Evolution 7 (1): 103–116. DOI: https://doi.org/10.1006/mpev.1996.0376
O’Donnell K., Cigelnik E., Nirenberg H.I. 1998. Molecular systematic and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90 (3): 465–493. DOI: https://doi.org/10.1080/00275514.1998.12026933
Saeedi Sh., Jamali S. 2021. Molecular characterization and distribution of Fusarium isolates from uncultivated soils and chickpea plants in Iran with special reference to Fusarium redolens. Journal of Plant Pathology 103 (4): 167–183. DOI: https://doi.org/10.1007/s42161-020-00698-w
Sharma K.D., Muehlbauer F.J. 2007. Fusarium wilt of chickpea: physiological specialization, genetics of resistance and resistance gene tagging. Euphytica 157 (1–2): 1–14. DOI: https://doi.org/10.1007/s10681-007-9401-y
Shokri J., Javan-Nikkhah M., Rezaei S., Zamanizadeh H.R., Nourollahi Kh. 2020. Molecular identification of the races of Fusarium oxysporum f. sp. ciceris, causal agent of chickpea wilt in western and north western provinces of Iran. Applied Entomology and Phytopathology 88 (1): 11–12. DOI: https://doi.org/10.22092/jaep.2020.126209.1281
Taylor J.W., Jacobson D.J., Kroken S., Kasuga T., Geiser D.M., Hibbett D.S., Fisher M.C. 2001. Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology 31 (1): 21–32. DOI: https://doi.org/10.1006/fgbi.2000.1228
Trapero-Casas A., Jimenez-Diaz R.M. 1985. Fungal wilt and root rot diseases of chickpea in southern Spain. Phytopathology 75 (10): 1146–1151. DOI: https://doi.org/10.1094/ Phyto-75-1146
Wang J., Zheng C. 2012. Characterization of a newly discovered Beauveria bassiana isolate to Franklimiella occidentalis Perganda, a non-native invasive species in China. Microbiology Research 167 (2): 116–120. DOI: https://doi.org/10.1016/j.micres.2011.05.002
Younesi H. 2004. Identification of the physiologic races of Fusarium oxysporum f. sp. ciceris in some west provinces of Iran. In: Proceedings of the 16th Iranian Plant Protection Congress, Tabriz, Iran (in Persian with English summary)
Younesi H., Chehri Kh., Sheikholeslami M., Safaee D., Naseri B. 2019. Effects of sowing date and depth on Fusarium wilt development in chickpea cultivars. Journal of Plant Pathology 102 (2): 343–350. DOI: https//doi/10.1007/s42161-019-00423-2
Zokaee S., Falahati Rastegar M., Jafar Poor B., Bagheri A., Jahanbakhsh Mashhadi V. 2012. Genetic diversity determination of Fusarium oxysporum f. sp. ciceris the causal agent of wilting and chlorosis in chickpea by using RAPD and PCR- -RFLP techniques in Razavi and northern Khorasan provinces. Iranian Journal of Pulses Research 3 (2): 7–16. DOI: https://doi.org/10.22067/ijpr.v1391i2.24531
Go to article

Authors and Affiliations

Hassan Younesi
1
ORCID: ORCID
Mostafa Darvishnia
1
ORCID: ORCID
Eidi Bazgir
1
ORCID: ORCID
Khosrow Chehri
2
ORCID: ORCID

  1. Department of Plant Protection, College of Agriculture and Natural Resources, Lorestan University, Khorramabad, Iran
  2. Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran
Download PDF Download RIS Download Bibtex

Abstract

In Egypt, faba bean plants are severely damaged by charcoal rot, caused by Macrophomina phaseolina and root-knot, caused by Meloidogyne incognita. The current study was aimed to control these diseases using silver nanoparticles that were biologically synthesized from Moringa oleifera leaf extract. In this work, silver nanoparticles (AgNPs) were prepared with trisodium citrate as a reducing agent to produce chemo-AgNPs and, using an environmentally eco-friendly method, an aqueous extract of M. oleifera leaves under visible light radiation to produce bio-AgNPs. The obtained colloidal solutions of AgNPs were identified by UV-Visible (UV-Vis) spectral analysis and Transmission Electron Microscopy (TEM) analyses. The antifungal and anti-nematode activities of chemo- and bio-AgNPs as well as an aqueous extract of M. oleifera leaves were checked in vitro against M. phaseolina and M. incognita. The obtained results showed that bio-AgNPs were more effective than chemo-AgNPs. Under greenhouse conditions, bio-AgNPs showed a significant reduction in the incidence of damping-off and charcoal rot caused by M. phaseolina. This treatment also reduced the number of juveniles in the soil, the number of galls and the number of egg-masses of M. incognita in comparison to plants treated with nematodes. Moreover, the protein profile using SDS-PAGE was performed for determining the effect of the studied treatments on the expression of some genes compared with untreated plants the alteration in gene expression led to the formation of different proteins and the loss of others. The proteins which were formed or lost caused a significant variation in all growth and physiological parameters such as photosynthetic pigments, proline content and antioxidant enzymes of faba bean plants.
Go to article

Bibliography


Abd-Elgawad M.M.M., Askary T.H. 2018. Fungal and bacterial nematicides in integrated nematode management strategies. Egyptian Journal of Biological Pest Control 28: 74. DOI: https://doi.org/10.1186/s41938-018-0080-x
Abdel-Monaim M.F. 2013. Improvement of biocontol of damping- off and root-rot/wilt of faba bean by salicylic acid and hydrogen peroxide. Mycobiology 41: 47−55. DOI: https://doi.org/10.5941/MYCO.2013.41.1.47
Abdelsalam A.Z.E., Hassan H.Z., El-Domyati M., Eweda M.A., Bahieldin A., Ibrahim S.A. 1993. Comparative mutagenic effects of some compounds using different eukaryotic systems. Egyptian Journal of Genetics and Cytology 22: 129−153.
Al-Huqail A.A., Hatata M.M., AL-Huqail A.A., Ibrahim M.M. 2018. Preparation, characterization of silver phyto nanoparticles and their impact on growth potential of Lupinus termis L. seedlings. Saudi Journal of Biological Sciences 25: 313−319. DOI: https://doi.org/10.1016/j.sjbs.2017.08.013
Baird R.E., Watson C.E., Scruggs M. 2003. Relative longevity of Macrophomina phaseolina and associated mycobiota on residual soybean roots in soil. Plant Disease 87: 563−566. DOI: https://doi.org/10.1094/PDIS.2003.87.5.563
Barker T.R. 1985. Nematode extraction and bioassays. p. 19−35. In: “An Advanced Treatise on Meloidogyne”. Vol. II. (T.R. Barker, C.C. Carter, J.N. Sasser, eds.). North Carolina University, Graphics, Raleigh, N.C.
Bates L.S., Waldren R.P., Teare I.D. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39: 205−207. DOI: https://doi.org/10.1007/BF00018060
Cayrol J.C., Djian C., Pijarowski L. 1989. Study of the nematocidal properties of the culture filtrate of the nematophagous fungus Paecilomyces lilacinus. Rev Nematol 12: 331–336.
Dietz K.J., Herth S. 2012. Plant nanotoxicology. Trends in Plant Science 16: 582−589. DOI: https://doi.org/10.1016/j.tplants.2011.08.003
El-Nagdi W.M.A., Youssef M.M.A. 2004. Soaking faba bean seed in some bio-agents as prophylactic treatment for controlling Meloidogyne incognita root-knot nematode infection. Journal of Pest Science 77: 75−78. DOI: https://doi.org/10.1007/s10340-003-0029-y
El-Refai A.A., Ghoniem G.A., El-Khateeb A.Y., Hassaan M.M. 2018. Eco-friendly synthesis of metal nanoparticles using ginger and garlic extracts as biocompatible novel antioxidant and antimicrobial agents. Journal of Nanostructure in Chemistry 8: 71−81. DOI: https://doi.org/10.1007/s40097-018-0255-8
Elshahawy I., Abouelnasr H.M., Lashin S.M., Darwesh O.M. 2018. First report of Pythium aphanidermatum infecting tomato in Egypt and its control using biogenic silver nanoparticles. Journal of Plant Protection Research 58: 137−151. DOI: https://doi.org/10.24425/122929
Fouad M., Mohammed N., Aladdin H., Ahmed A., Xuxiao Z., Shiying B., Tao Y. 2013. Faba bean. p. 113−136. In: “Genetic and Genomic Resources of Grain Legume Improvement” (M. Singh, H.D. Upadhyaya, I.S. Bisht, eds.). Elsevier. DOI: https://doi.org/10.1016/C2012-0-00217-7
Foyer C.H., Noctor G. 2005. Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant, Cell and Environment 28: 1056−1071. DOI: https://doi.org/10.1111/j.1365-3040.2005.01327.x
Feizi H., Amirmoradi S., Abdollahi F., Pour S.J. 2013. Comparative effects of nanosized and bulk titanium dioxide concentrations on medicinal plant Salvia officinalis L. Annual Research & Review in Biology 3: 814−824.
Giraldo J.P., Landry M.P., Faltermeier S.M., McNicholas T.P., Iverson N.M., Boghossian A.A., Reuel N.F., Hilmer A.J., Sen F., Brew J.A., Strano M.S. 2014. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nature Materials 13 (4): 400−408. DOI: https://doi.org/10.1038/nmat3890
Hamed S.M., Hagag E.S., Abd El-Raouf N. 2019. Green production of silver nanoparticles, evaluation of their nematicidal activity against Meloidogyne javanica and their impact on growth of faba bean. Beni-Suef University Journal of Basic and Applied Sciences 8: 9. DOI: https://doi.org/10.1186/s43088-019-0010-3
Hassan H.Z., Haliem A.S., Abd El-Hady E.A. 2002. Effect of pre and post treatments with ferty green foliar fertilizer on mutagenic potentiality of gokilaht insecicide. Egyptian Journal of Biotechnology 11: 282−304.
Hatami M., Ghorbanpour M. 2013. Effect of nanosilver on physiological performance of pelargonium plants exposed to dark storage. Journal of Horticultural Research 21: 15−20. DOI: https://doi.org/10.2478/johr-2013-0003
Hegaba A.S.A., Fayed M.T.B., Hamada M.M.A., Abdrabbo M.A.A. 2014. Productivity and irrigation requirements of faba-bean in North Delta of Egypt in relation to planting dates. Annals of Agricultural Sciences 59: 185−193. DOI: https://doi.org/10.1016/j.aoas.2014.11.004
Hussey R.S., Barker K.R. 1973. A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Disease Reporter 57: 1025−1028. DOI: https://eurekamag.com/research/000/002/000002412.php
Hajipour M.J., Fromm K.M., Ashkarran A.A., de Aberasturi D.J., de Larramendi I.R., Rojo T., Serpooshan V., Parak W.J., Mahmoudi M. 2012. Antibacterial properties of nanoparticles. Trends in Biotechnology 30: 499−511. DOI: https://doi.org/10.1016/j.tibtech.2012.06.004
Hayat Sh., Hayat Q., Alyemeni M.N., Wani A.S., Pichtel J., Ahmad A. 2012. Role of proline under changing environments. Plant Signaling & Behavior 7: 1456−1466. DOI: https://doi.org/10.4161/psb.21949
Iqbal M., Raja N.I., Mashwani Z.U.R., Hussain M., Ejaz M., Yasmeen F. 2019. Effect of silver nanoparticles on growth of wheat under heat stress. Iranian Journal of Science and Technology, Transactions A: Science 43: 387−395. DOI: https://doi.org/10.1007/s40995-017-0417-4.
Javed R., Zia M., Naz S., Aisid S.O., ul Ain N., Ao Q. 2020. Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. Journal of Nanobiotechnology 18: 172. DOI: https://doi.org/10.1186/s12951-020-00704-4
Jasim B., Roshmi T., Jyothis M., Radhakrishnan E.K. 2017. Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharmaceutical Journal 25 (3): 443−447. DOI: https://doi.org/10.1016/j.jsps.2016.09.012
Jeschke P. 2016. Progress of modern agricultural chemistry and future prospects. Pest Management Science 72: 433−455. DOI: https://doi.org/10.1002/ps.4190
Jurkow R., Pokluda R., Sękara A., Kalisz A. 2020. Impact of foliar application of some metal nanoparticles on antioxidant system in oakleaf lettuce seedlings. BMC Plant Biology 20: 290. DOI: https://doi.org/10.1186/s12870-020-02490-5
Karthick S., Chitrakala K. 2011. Ecotoxicological effect of Lecani cilium Lecanii (Ascomycota: Hypocereales) based silver nanoparticles on growth parameters of economically important plants. Journal of Biopesticides 4: 97−101.
Khiew P., Chiu W., Tan T., Radiman S., Abd-Shukor R., Chia C.H. 2011. Capping effect of palm-oil based organometallic ligand towards the production of highly monodispersed nanostructured material. p. 189−219. In: “Palm Oil Nutr Uses Impacts”. Nova Science.
Kim J.S., Kuk E., Yu K.N., Kim J.H., Park S.J., Lee H.J., Kim S.H., Park Y.K., Park Y.H., Hwang C.Y., Kim Y.K., Lee Y.S., Jeong D.H., Cho M.H. 2007. Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine 3: 95−101. DOI: https://doi.org/10.1016/j. nano.2006.12.001
Kumari M., Pandey S., Bhattacharya A., Mishra A., Nautiyal C.S. 2017. Protective role of biosynthesized silver nanoparticles against early blight disease in Solanum lycopersicum. Plant Physiology and Biochemistry 121: 216−225. DOI: https://doi.org/10.1016/j.plaphy.2017.11.004
Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680−685. DOI: https://doi.org/10.1038/227680a0
Marklund S., Marklund G. 1974. Involvement of thesuperoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry 47: 469−474. DOI: http://doi.org/10.1111/j.1432-1033.1974.tb03714.x
Mehta P.C.M., Srivastava R., Arora S., Sharma A.K. 2016. Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech 6: 254. DOI: https://doi.org/10.1007/s13205-016-0567-7
Min J.S., Kim K.S., Kim S.W., Jung J.H., Lamsal K., Kim S.B., Jung M., Lee Y.S. 2009. Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. The Plant Pathology Journal 25: 376−380. DOI: https://doi.org/10.5423/PPJ.2009.25.4.376
Mohamed A.S.H., Qayyum M.F., Abdel-Hadi A.M., Rehman R.A., Ali S., Rizwan M. 2017. Interactive effect of salinity and silver nanoparticles on photosynthetic and biochemical parameters of wheat. Archives of Agronomy and Soil Science 63: 1476−3567. DOI: https://doi.org/10.1080/0 3650340.2017.1300256
Monreal J.A., Jimenez E.T., Remesal E., Morillo-Velarde R., Garcia- Maurino S., Echevarria C. 2007. Proline content of sugar beet storage roots: Response to water deficit and nitrogen fertilization at field conditions. Environmental and Experimental Botany 60: 257−267. DOI: https://doi.org/10.1016/j.envexpbot.2006.11.002
Mukherjee S.P., Choudhuri M.A. 1983. Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Plant Physiology 58: 166−170. DOI: https://doi.org/10.1111/j.1399-3054.1983.tb04162.x
Muller H.P., Gottschelk W. 1973. Quantitative and qualitative situation of Pisum sativum. p. 235−253. In: “Nuclear Techniques for Seed Protein Improvement”. International Atomic Energy Agency, Vienna, 430 pp.
Musante C., White J.C. 2012. Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environmental Toxicology 27 (9): 510−517. DOI: http://doi.org/10.1002/tox.20667
Narayanan K.B., Sakthivel N. 2010. Biological synthesis of metal nanoparticles by microbes. Advances in Colloid and Interface Science 156: 1−13. DOI: https://doi.org/10.1016/j.cis.2010.02.001
Nazir K., Mukhtar T., Javed H. 2019. In vitro effectiveness of silver nanoparticles against root-knot nematode (Meloidogyne incognita). Pakistan Journal of Zoology 51: 2077−2083. DOI: http://dx.doi.org/10.17582/journal.pjz/2019.51.6.2077.2083
Osman S.A., Salama D.M., Abd El-Aziz M.E., Shaaban E.A., Abd Elwahed M.S. 2020. The influence of MoO3-NPs on agro-morphological criteria, genomic stability of DNA, biochemical assay, and production of common dry bean (Phaseolus vulgaris L.). Plant Physiology and Biochemistry 151: 77−87. DOI: https://doi.org/10.1016/j.plaphy.2020.03.009.
Pirtarighat S., Ghannadnia M., Baghshahi S. 2019. Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. Journal of Nanostructure in Chemistry 9: 1−9. DOI: https://doi.org/10.1007/s40097-018-0291-4
Prasad T., Elumalai E. 2011. Biofabrication of Ag nanoparticles using Moringa oleifera leaf extract and their antimicrobial activity. Asian Pacific Journal of Tropical Biomedicine 1: 439−442. DOI: https://doi.org/10.1016/S2221-1691(11)60096-8
Salama H.M.H. 2012. Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). International Research Journal of Biotechnology 3: 190−197. DOI: http://www.interesjournals.org/IRJOB
Sharma P., Bhatt D., Zaidi M.G.H., Saradhi P.P., Khanna P.K., Arora S. 2012. Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Applied Biochemistry and Biotechnology 167: 2225−2233. DOI: https://doi.org/10.1007/s12010-012-9759-8
Sharon M., Choudhary A.K., Kumar R. 2010. Nanotechnology in agricultural diseases and food safety. The Journal of Phytology 2: 83−92.
Singleton L.L., Mihail J.D., Rush C.M. 1993. Methods for research on soilborne phytopathogenic fungi 85 (1): 140–141. DOI: http://doi.org/10.2307/3760494
Vannini C., Domingo G., Onelli E., Prinsi B., Marsoni M., Espen L., Bracale M. 2013. Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS One 8: e6875. DOI: https://doi.org/10.1371/journal.pone.0068752
Wrather J.A., Anderson T.R., Arsyad D.M., Tan Y., Ploper L.D., Puglia A.P. 2011. Soyabean disease loss estimates for the top 10 soybean producing countries. Canadian Journal of Plant Pathology 23: 115−121. DOI: https://doi.org/10.1094/PDIS.1997.81.1.107
Go to article

Authors and Affiliations

Yasser Mahmoud A. Mohamed
1
ORCID: ORCID
Samira A. Osman
2
Ibrahim E. Elshahawy
3
Gazeia M. Soliman
4
Aisha M.A. Ahmed
5

  1. Photochemistry Department, National Research Center, Dokki, Giza, Egypt
  2. Genetics and Cytology Department, National Research Center, Dokki, Giza, Egypt
  3. Plant Pathology Department, National Research Center, Dokki, Giza, Egypt
  4. Plant Pathology Department, Nematology Unit, National Research Center, Dokki, Giza, Egypt
  5. Botany Department, National Research Center, Dokki, Giza, Egypt
Download PDF Download RIS Download Bibtex

Abstract

The potato cyst nematode (PCN), Globodera pallida, originates from South America and is considered one of the most severe agricultural pests of potato crops and other Solanaceae plants globally. Based on their virulence and ability to reproduce on various potato cultivars, the populations of G. pallida are divided into three pathotypes, Pa1– Pa3. In this study, comparative sequence analyses of the fragment of mitochondrial cytochrome c oxidase subunit II ( mtCOII) gene for eight populations of G. pallida, representing three pathotypes, Pa1, Pa2 and Pa3, indicated genetic diversity between them. However, we did not identify significant mutations distinguishing Pa2 from Pa3. Interestingly, two single nucleotide substitutions, T441C and A468G, were characteristic only for populations assigned to Pa1. On this basis, we developed high resolution melting (HRM) PCR protocol. As a result, the melting curves obtained for samples of Pa1 populations varied from those obtained for populations designed as Pa2 and Pa3, allowing their differentiation. Thus, the HRM protocol developed here enables a rapid, very sensitive and low-cost screening assay for SNPs identification in mtCOII of G. pallida pathotypes. In effect, it might also be a helpful molecular tool in pathotype differentiation. However, further verification of the correlation of the occurrence of single nucleotide mutations in mtCOII in particular pathotypes should be carried out on a much larger number of samples of G. pallida, to determine if these mutations are characteristic only for this pathotype.
Go to article

Bibliography


Bakker J., Bouwman-Smits L., Gommers F.J. 1992. Genetic relationships betacceween Globodera pallida pathotypes in Europe assessed by using two dimensional gel electrophoresis of proteins. Fundamental and Applied Nematology 15: 481–490.
Bates J.A., Taylor E.J.A., Gans P.T., Thomas J.E. 2002. Determination of relative proportions of Globodera species in mixed populations of potato cyst nematodes using PCR product melting peak analysis. Molecular Plant Pathology 3 (3): 153–161. DOI: https://doi.org/10.1046/j.1364-3703.2002.00107.x
Bulman S.R., Marshall J.W. 1997. Differentiation of Australa- sian potato cyst nematode (PCN) populations using the polymerase chain reaction (PCR). New Zealand Journal of Crop and Horticultural Science 25 (2): 123–129.
Burrows P.R., Boffey S.A. 1986. A technique for the extraction and restriction endonuclease digestion of total DNA from Globodera rostochiensis and Globodera pallida second stage juveniles. Revue de Nematologie 9 (2): 199–200.
EPPO. 2017. 7/40 (4) Globodera rostochiensis and Globodera pallida. EPPO Bulletin 47: 174–197.
Folkertsma R.T., der Voort J., van Gent-Pelzer M.P.E., De Groot K.E., van Den Bos W.J., Schots A., Bakker J., Gommers F.J. 1994. Inter-and intraspecific variation between populations of Globodera rostochiensis and G. pallida revealed by random amplified polymorphic DNA. Phytopathology 84 (8): 807–811.
Fox P.C., Atkinson H.J. 1984. Isoelectric focusing of general protein and specific enzymes from pathotypes of Globodera rostochiensis and G. pallida. Parasitology 88 (1): 131–139. DOI: https://doi.org/10.1017/S0031182000054408
Hinch J.M., Alberdi F., Smith S.C., Woodward J.R., Evans K. et al. 1998. Discrimination of European and Australian Globodera rostochiensis and G. pallida pathotypes by high performance capillary electrophoresis. Fundamental and Applied Nematology 21 (2): 123–128.
Hoolahan A.H., Blok V.C., Gibson T., Dowton M. 2012. A comparison of three molecular markers for the identification of populations of Globodera pallida. Journal of Nematology 44 (1): 7.
Kort J., Ross H., Rumpenhorst H.J., Stone A.R. 1977. An international scheme for identifying and classifying pathotypes of potato cyst-nematodes Globodera rostochiensis and G. pallida. Nematologica 23 (3): 333–339.
Madani M., Subbotin S.A., Moens M. 2005. Quantitative detection of the potato cyst nematode, Globodera pallida, and the beet cyst nematode, Heterodera schachtii, using real-time PCR with SYBR green I dye. Molecular and Cellular Probes 19 (2): 81–86.
Nakhla M.K., Owens K.J., Li W., Wei G., Skantar A.M., Levy L. 2010. Multiplex real-time PCR assays for the identification of the potato cyst and tobacco cyst nematodes. Plant Disease 94 (8): 959–965.
Nowaczyk K., Dobosz R., Budziszewska M., Kamasa J., Obrępalska-Stęplowska A. 2011. Analysis of diversity of golden potato cyst nematode (Globodera rostochiensis) populations from Poland using molecular approaches. Journal of Phytopathology 159 (11–12): 759–766.
Nowaczyk K., Dobosz R., Kornobis S., Obrepalska-Steplowska A. 2008. TaqMan REAL-Time PCR-based approach for differentiation between Globodera rostochiensis (golden nematode) and Globodera artemisiae species. Parasitology Research 103 (3): 577–581.
Phillips M.S., Trudgill D.L. 1983. Variations in the ability of Globodera pallida to produce females on potato clones bred from Solanum vernei or S. tuberosum ssp. andigena CPC 2802. Nematologica 29 (2): 217–226.
Phillips M.S., Trudgill D.L. 1998. Variation of virulence, in terms of quantitative reproduction of Globodera pallida populations, from Europe and South America, in relation to resistance from Solanum vernei and S. tuberosum ssp. andigena CPC 2802. Nematologica 44 (4): 409–423.
Saenz M.C., De Scurrah M.M. 1977. Races of the potato cyst nematode in the Andean region and a new system of classification. Nematologica 23 (3): 340–349.
Schnick D., Rumpenhorst H.J., Burgermeister W. 1990. Differentiation of closely related Globodera pallida (Stone) populations by means of DNA restriction fragment length polymorphisms (RFLPs). Journal of Phytopathology 130 (2): 127–136.
Sedlak P., Melounova M., Skupinova S., Vejl P., Domkarova J. 2004. Study of European and Czech populations of potato cyst nematodes (Globodera rostochiensis and G. pallida) by RAPD method. Plant Soil and Environment 50 (2): 70–74.
Subbotin S.A., Franco J., Knoetze R., Roubtsova T.V., Bostock R.M., Del Prado Vera I.C. 2020. DNA barcoding, phylogeny and phylogeography of the cyst nematode species from the genus Globodera (Tylenchida: Heteroderidae). Nematology 22 (3): 269–297.
Thiery M., Fouville D., Mugniery D. 1997. Intra-and interspecific variability in Globodera, parasites of Solanaceous plants, revealed by Random Amplified Polymorphic DNA (RAPD) and correlation with biological features. Fundamental and Applied Nematology 20 (5): 495–504.
Vejl P., Skupinova S., Sedlak P., Domkarova J. 2002. Identification of PCN species (Globodera rostochiensis, G. pallida) by using of ITS-1 region’s polymorphism. Rostlinna Vyroba 48 (11): 486–489.
Zouhar M., Ryšanek P., Kočova M. 2000. Detection and differentiation of the potato cyst nematodes Globodera rostochiensis and Globodera pallida by PCR. Plant Protection Science 36 (3): 81–84.
Go to article

Authors and Affiliations

Marta Budziszewska
1
ORCID: ORCID

  1. Department of Molecular Biology and Biotechnology, Institute of Plant Protection – National Research Institute, Poznań, Poland

Instructions for authors

Instructions for Authors

Manuscripts published in JPPR are free of charge. Only colour figures and photos are payed 61.5 € per one colour page JPPR publishes original research papers, short communications, critical reviews, and book reviews covering all areas of modern plant protection. Subjects include phytopathological virology, bacteriology, mycology and applied nematology and entomology as well as topics on protecting crop plants and stocks of crop products against diseases, viruses, weeds, etc. Submitted manuscripts should provide new facts or confirmatory data. All manuscripts should be written in high-quality English. Non-English native authors should seek appropriate help from English-writing professionals before submission. The manuscript should be submitted only via the JPPR Editorial System (http://www.editorialsystem.com/jppr). The authors must also remember to upload a scan of a completed License to Publish (point 4 and a handwritten signature are of particular importance). ALP form is available at the Editorial System. The day the manuscript reaches the editors for the first time is given upon publication as the date ‘received’ and the day the version, corrected by the authors is accepted by the reviewers, is given as the date ‘revised’. All papers are available free of charge at the Journal’s webpage (www.plantprotection.pl). However, colour figures and photos cost 61.5 € per one colour page.

General information for preparing a manuscript

All text should be written in a concise and integrated way, by focusing on major points, findings, breakthrough or discoveries, and their broad significance. All running text should be in Times New Roman 12, 1.5 spacing with all margins 2.5 cm on all sides.

Original article

The original research articles should contain the following sections: Title – the title should be unambiguous, understandable to specialists in other fields, and must reflect the contents of the paper. No abbreviations may be used in the title. Name(s) of author(s) with affiliations footnoted added only to the system, not visible in the manuscript (Double Blind Reviews). The names of the authors should be given in the following order: first name, second name initial, surname. Affiliations should contain: name of institution, faculty, department, street, city with zip code, and country. Abstract – information given in the title does not need to be repeated in the abstract. The abstract should be no longer than 300 words. It must contain the aim of the study, methods, results and conclusions. If used, abbreviations should be limited and must be explained when first used. Keywords – a maximum of 6, should cover the most specific terms found in the paper. They should describe the subject and results and must differ from words used in the title. Introduction – a brief review of relevant research (with references to the most important and recent publications) should lead to the clear formulation of the working hypothesis and aim of the study. It is recommended to indicate what is novel and important in the study. Materials and Methods – in this section the description of experimental procedures should be sufficient to allow replication. Organisms must be identified by scientific name, including authors. The International System of Units (SI) and their abbreviations should be used. Methods of statistical processing, including the software used, should also be listed in this section. Results – should be presented clearly and concisely without deducting and theori sing. Graphs should be preferred over tables to express quantitative data. Discussion – should contain an interpretation of the results ( without unnecessary repetition) and explain the influence of experimental factors or methods. It should describe how the results and their interpretation relate to the scientific hypothesis and/or aim of the study. The discussion should take into account the current state of knowledge and up-to-date literature. It should highlight the significance and novelty of the paper. It may also point to the next steps that will lead to a better understanding of the matters in question. Acknowledgements – of people, grants, funds, etc. should be placed in a separate section before the reference list. The names of funding organizations should be written in full. References In the text, papers with more than two authors should be cited by the last name of the first author, followed by et al. (et al. in italics), a space, and the year of publication (example: Smith et al. 2012). If the cited manuscript has two authors, the citation should include both last names, a space, and the publication year (example: Marconi and Johnston 2006). In the Reference section, a maximum of ten authors of the cited paper may be given. All references cited in the text must be listed in the Reference section alphabetically by the last names of the author(s) and then chronologically. The year of publication follows the authors’ names. All titles of the cited articles should be given in English. Please limit the citation of papers published in languages other than English. If necessary translate the title into English and provide information concerning the original language in brackets (e.g. in Spanish). The list of references should only include works from the last ten years that have had the greatest impact on the subject. Older references can be cited only if they are important for manuscript content. The full name of periodicals should be given. If possible, the DOI number should be added at the end of each reference. The following system for arranging references should be used: Journal articles Jorjani M., Heydari A., Zamanizadeh H.R., Rezaee S., Naraghi L., Zamzami P. 2012. Controlling sugar beet mortality disease by application of new bioformulations. Journal of Plant Protection Research 52 (3): 303-307. DOI: https://doi.org/10.2478/v10045-012-0049-9 Online articles Turner E., Jacobson D.J., Taylor J.W. 2011. Genetic architecture of a reinforced, postmating, reproductive isolation barrier between Neurospora species indicates evolution via natural selection. PLoS Genetics 7 (8): e1002204. DOI: https://doi.org/10.1371/journal.pgen.1002204 Books Bancrof J.D., Stevens A. 1996. Theory and Practice of Histological Techniques. 4th ed. Churchill Livingstone, Edinburgh, UK, 776 pp. Book chapters Pradhan S.K. 2000. Integrated pest management. p. 463-469. In: "IPM System in Agriculture. Cash Crop" (R.K. Upadhyaya, K.G. Mukerji, O.P. Dubey, eds.). Aditya Books Pvt. Ltd. New Delhi, India, 710 pp. Online documents Cartwright J. 2007. Big stars have weather too. IOP Publishing PhysicsWeb. Available on: https://doi.org/10.1371/journal.pgen.1002204

Tables, Figures, Phothographs, Drawings

Tables and figures should be uploaded as separated files at the submission stage. Their place in the manuscript should be clearly indicated by authors. Colour figures are accepted at no charge for the electronic version. In the hardcopy version of the journal, colour figures cost (65,5 € per one colour page). When attaching files please indicate if you want colour only in the online version or in both the online and the hardcopy. Photographs and RGB bitmaps should be provided in JPG or TIFF file format. They must have no less than 300 dpi resolution. The text column should be 8 cm wide and they must be at least 1000 pixels wide. Please send original (not resized) photograph(s), straight from a digital camera, without any text descriptions on the photo. Bitmaps combined with text object descriptions should be provided in MS Word or MS Powerpoint format. Text objects using Arial font-face should be editable (changing font-face or font size). Drawings should be provided in MS Word, MS Powerpoint, CorelDRAW or EPS file format and stored with original data file. Text objects using Arial font-face should be editable (changing font-face or font size). Charts (MS Excel graphs) should be provided in MS Excel file format, and stored with original MS Excel data file without captions but with the number of the figure attached. Please do not use bitmap fills for bar charts. Use colour fills only if necessary. Captions and legends should be added at the end of the text, referred to as "Fig." and numbered consecutively throughout the paper.

Rapid communications

Rapid communications should present brief observations which do not warrant the length of a full paper. However, they must present completed studies and follow the same scientific standards as original articles. Rapid communications should contain the following sections: Title Abstract - less than 300 words Key words - maximum 6 Text body Acknowledgements References The length of such submissions is limited to 1500 words for the text, one table, and one figure.

Reviews

Review articles are invited by the editors.Unsolicited reviews are also considered. The length is limited to 5000 words with no limitations on figures and tables and a maximum of 150 references. Mini-Review articles should be dedicated to "hot" topics and limited to 3000 words and a maximum two figures, two tables and 20 references.

This page uses 'cookies'. Learn more