Details
Title
The Fractional derivative rheological model and the linear viscoelastic behavior of hydrocolloidsJournal title
Chemical and Process EngineeringYearbook
2012Issue
No 1 MarchAuthors
Keywords
hydrocolloids ; xanthan gum ; fractional derivative rheological modelDivisions of PAS
Nauki TechniczneCoverage
141-151Publisher
Polish Academy of Sciences Committee of Chemical and Process EngineeringDate
2012Type
Artykuły / ArticlesIdentifier
DOI: 10.2478/v10176-012-0013-2 ; ISSN 0208-6425Source
Chemical and Process Engineering; 2012; No 1 March; 141-151References
Choi H. (2009), Steady and dynamic shear rheology of sweet potato starch-xanthan gum mixtures, Food Chem, 116, 638, doi.org/10.1016/j.foodchem.2009.02.076 ; Christianson D. (1982), Food carbohydrates, 399. ; Clark A. (1987), Structural and mechanical properties of biopolymer gels, Adv. Polymer Sci, 83, 157, doi.org/10.1007/BFb0023330 ; Dinzart F. (2009), Improved five-parameter fractional derivative model for elastomers, Arch. Mech, 61, 459. ; Doublier J. (1981), Rheological studies on starch. Flow behaviour of wheat starch pastes, Starch, 33, 415, doi.org/10.1002/star.19810331205 ; Ferry F. (1980), Viscoelastic properties of polymers. ; Fijan R. (2007), Rheological study of interactions between non-ionic surfactants and polysaccharide thickeners used in textile printing, Carbohydrate Polymers, 68, 708, doi.org/10.1016/j.carbpol.2006.08.006 ; Fijan R. (2009), A study of rheological and molecular weight properties of recycled polysaccharides used as thickeners in textile printing, Carbohydrate Polymers, 76, 8, doi.org/10.1016/j.carbpol.2008.09.027 ; Chr Friedrich (1991), Relaxation and retardation functions of the Maxwell model with fractional derivatives, Rheol. Acta, 30, 151, doi.org/10.1007/BF01134604 ; Chr Friedrich (1993), Mechanical stress relaxation in polymers: Fractional integral model versus fractional differential model, J. Non-Newt. Fluid Mech, 46, 307, doi.org/10.1016/0377-0257(93)85052-C ; Chr Friedrich (1992), Generalized Cole-Cole behavior and its rheological relevance, Rheol. Acta, 31, 309, doi.org/10.1007/BF00418328 ; Chr Friedrich (1994), Linear viscoelastic behavior of complex polymeric materials: A fractional mode representation, Colloid Polym. Sci, 272, 1536, doi.org/10.1007/BF00664721 ; Chr Friedrich (1988), Extension of a model for crosslinking polymer at the gel point, J. Rheol, 32, 235, doi.org/10.1122/1.549971 ; Kilbas A. (2006), Theory and applications of fractional differential equations. ; Kim C. (2006), Rheological properties of rice starch-xanthan gum mixtures, J. Food Eng, 75, 120, doi.org/10.1016/j.jfoodeng.2005.04.002 ; Koroteeva D. (2007), Structural and thermodynamic properties of rice starches with different genetic background: Part 2. Defectiveness of different supramolecular structures in starch granules, Inter. J. Biol. Macromol, 41, 534, doi.org/10.1016/j.ijbiomac.2007.07.005 ; Mandala I. (2003), Effect of preparation conditions and starch-xanthan concentration on gelation process of potato starch systems, Inter. J. Food Prop, 6, 311, doi.org/10.1081/JFP-120017818 ; Mweta D. A., 2009. <i>Physicochemical, functional and structural properties of native Malawian cocoyam and sweetpotato starches.</i> PhD Thesis, The University of The Three State Bloemfontein, South Africa. ; Myszka K. (2004), The role of microbial exo-polysaccharides in food technology, Food. Science. Technology. Quality, 4, 18. ; Oblonšek M. (2003), Rheological studies of concentrated guar gum, Rheol. Acta, 42, 491, doi.org/10.1007/s00397-003-0304-0 ; Rupenthal I. D., 2008. <i>Ocular delivery of antisense oligonucleotides using colloidal carriers: Improving the wound repair after corneal surgery.</i> PhD Thesis, The University of Auckland, New Zealand. ; Siddig M. (2004), Rheological modelling of wormlike micelles systems using fractional viscoelastic model, Suranaree J. Sci. Technol, 11, 132. ; Sikora M. (2003), Interactions between starch from different botanical sources and hydrocolloids, Food. Science. Technology. Quality, 34, 40. ; Sikora M. (2008), Interactions between starch from different botanical sources and non-starchy hydrocolloids, Food. Science. Technology. Quality, 56, 23. ; Sittikijyothin W. (2005), Modelling the rheological behaviour of galactomannan aqueous solutions, Carbohydrate Polymers, 59, 339, doi.org/10.1016/j.carbpol.2004.10.005 ; Zener C. (1948), Elasticity and anelasticity of metals. ; Zupančič A. (2001), Viscoelastic properties of hydrophilic polymers in aqueous dispersions, Acta Chim. Slov, 48, 469.Editorial Board
Editorial Board
Ali Mesbach, UC Berkeley, USA
Anna Gancarczyk, Institute of Chemical Engineering, Polish Academy of Sciences, Poland
Anna Trusek, Wrocław University of Science and Technology, Poland
Bettina Muster-Slawitsch, AAE Intec, Austria
Daria Camilla Boffito, Polytechnique Montreal, Canada
Donata Konopacka-Łyskawa, Gdańsk University of Technology, Poland
Dorota Antos, Rzeszów University of Technology, Poland
Evgeny Rebrov, University of Warwick, UK
Georgios Stefanidis, National Technical University of Athens, Greece
Ireneusz Grubecki, Bydgoszcz Univeristy of Science and Technology, Poland
Johan Tinge, Fibrant B.V., The Netherlands
Katarzyna Bizon, Cracow University of Technology, Poland
Katarzyna Szymańska, Silesian University of Technology, Poland
Marcin Bizukojć, Łódź University of Technology, Poland
Marek Ochowiak, Poznań University of Technology, Poland
Mirko Skiborowski, Hamburg University of Technology, Germany
Nikola Nikacevic, University of Belgrade, Serbia
Rafał Rakoczy, West Pomeranian University of Technology, Poland
Richard Lakerveld, Hong Kong University of Science and Technology, Hong Kong
Tom van Gerven, KU Leuven, Belgium
Tomasz Sosnowski, Warsaw University of Technology, Poland