Application of genetic algorithms to determine heavy metal ions sorption dynamics on clinoptilolite bed

Journal title

Chemical and Process Engineering




No 1 March



sorption dynamics ; genetic algorithm ; heavy metal ions ; clinoptilolite

Divisions of PAS

Nauki Techniczne




Polish Academy of Sciences Committee of Chemical and Process Engineering




Artykuły / Articles


DOI: 10.2478/v10176-012-0010-5 ; ISSN 0208-6425


Chemical and Process Engineering; 2012; No 1 March; 103-116


Babu B. (2005), Modeling and simulation of fixed bed adsorption column: Effect of velocity variation, J. Eng. Technol, 1, 60, ; Chang M. (2005), Equilibrium and kinetic studies on the adsorption of surfactant, organic acids and dyes from water onto natural biopolymers, Colloids Surf. A: Physicochem. Eng. Aspects, 269, 35, ; Chen J. (2003), Effects of chemical and physical properties of influent on copper sorption onto activated carbon fixed-bed columns, Carbon, 41, 1635, ; Chojnacka K. (2004), The application of natural zeolites for mercury removal: from laboratory tests to industrial scale, Minerals Eng, 17, 7-8, 933, ; Davis L. (1991), Handbook of genetic algorithms. ; Duffus J. (2002), Heavy metals a meaningless term? (IUPAC Technical Report), Pure Appl. Chem, 74, 793, ; Erdem E. (2004), The removal of heavy metal cations by natural zeolites, J. Colloid Interface Sci, 280, 309, ; Fogel D. (1994), An introduction to simulated evolutionary optimization, IEEE Trans. Neural Networks, 1, 5, 3, ; Gök Ö. (2008), Adsorption kinetics of naphthalene onto organo-sepiolite from aqueous solutions, Desalination, 220, 96, ; Gomonaj V. (1998), Research on the usefulness transcarpathian clinoptilolite for the sorption of Hg(II), Cr(II) and Ni(II) from aqueous solutions, Ochrona Środowiska, 4, 71, 3. ; Gupta S. (2009), Modeling, simulation, and experimental validation of continuous Cr(VI) removal from aqueous solutions using sawdust as an adsorbent, Bioresource Technol, 100, 5633, ; Holland J. H., 1968. Hierarchical descriptions of universal spaces and adaptive systems. <i>Technical Report ORA Projects 01252 & 08226.</i> Ann Arbor, Univ. of Michigan. ; Holland J. (1987), Genetic algorithms and classifier systems, foundation and future directions, null, 82. ; Kaminski W. (2005), Application of artificial intelligence systems to solve some environmental problems. ; Kaminski W. (1998), Application of genetic algorithms in chemical and process engineering, null, 281. ; Kamio E. (2002), Uptakes of rare metal ionic species by a column packed with microcapsules containing an extractant, Sep. Purif. Technol, 29, 121, ; Kosobucki P. (2008), Immobilization of selected heavy metals in sewage sludge by natural zeolites, Bioresource Technol, 99, 5972, ; Kurowski Z., 1978. <i>Application of national clinoptilolites for removal of ammonia nitrogen in water renewal.</i> PhD Thesis, Faculty of Environmental Engineering, Wrocław University of Technology (in Polish). ; Linnik P. (1998), Heavy metal speciation as important characteristic of water bodies ecotoxicological state, null, 1240. ; Mercer B. (1976), Ammonia removal from wastewater. Natural zeolites - occurancse, properties use, 458. ; Molga E. (2008), Modeling of reactive adsorption processes, Chem. Process Eng, 29, 683. ; Pérez-Marín A. (2007), Removal of cadmium from aqueous solutions by adsorption onto orange waste, J. Hazardous Materials, 139, 122, ; Petrus R. (2005), Heavy metal removal by clinoptilolite. An equilibrium study in multi-component system, Water Res, 39, 819, ; Rutkowska D. (1997), Neural networks, genetic algorithms and fuzzy systems. ; Sağ Y. (2001), Application of equilibrium and mass transfer models to dynamic removal of Cr (VI) ions by chitin in packed column reactor, Process Biochem, 36, 1187, ; Sprynskyy M. (2005), Ammonium removal from aqueous solution by natural zeolite. Transcarpathian modernite: kinetics, equilibrium and column tests, Sep. Purif. Technol, 46, 155, ; Suguna M. (2010), Removal of divalent manganese from aqueous solution using Tamarindus indica ferut nut shell, J. Chem. Pharm. Res, 2, 1, 7. ; Tarasevich Yu. (2006), Equilibria and heats of ion exchange in the system of mordenite- alkali and alkaline earth cations, Theor. Experim. Chem, 42, 5, 320, ; Tomczak E. (2011), Application of ANN and EA for description of metal ions on chitosan foamed structure - Equilibrium and dynamics of packed column, Comp. Chem. Eng, 35, 226, ; Tomczak E. (2011a), Contamination removal from water solution in packed column - problems of adsorption dynamics modelling, Scientific Bulletin of Łódź Technical University, 1102, 412, 172. ; Tomczak E. (2008), Evolutionary algorithm reinforce with linear projection and clustering, null, 427, ; Tomczak E. (2010), Description of the equilibrium and sorption kinetics of heavy metals on clinoptilolite, Inż. Aparat. Chem, 1, 113. ; Whitly D. (2001), An overview of evolutionary algorithms: practical issues and common pitfalls, Inform. Software Technol, 43, 817, ; Zamzow M. (1990), Removal of heavy metals and other cations from waste water using zeolites, Sep. Sci. Technol, 25, 13,