Details
Title
Reaction kinetics of CO2 in aqueous methyldiethanolamine solutions using the stopped-flow techniqueJournal title
Chemical and Process EngineeringYearbook
2012Issue
No 1 MarchAuthors
Keywords
CO2capture ; reaction kinetics ; methyldiethanolamine ; stopped-flow techniqueDivisions of PAS
Nauki TechniczneCoverage
7-18Publisher
Polish Academy of Sciences Committee of Chemical and Process EngineeringDate
2012Type
Artykuły / ArticlesIdentifier
DOI: 10.2478/v10176-012-0001-6 ; ISSN 0208-6425Source
Chemical and Process Engineering; 2012; No 1 March; 7-18References
Donaldson T. (1980), Carbon dioxide reaction kinetics and transport in aqueous amine membranes, Ind. Eng. Chem. Fundam, 19, 260, doi.org/10.1021/i160075a005 ; Figueroa J. (2008), Advances in CO<sub>2</sub> capture technology - The U. S. Department of Energy's Carbon Sequestration Program, Int. J Greenhouse Gas Control, 2, 9, doi.org/10.1016/S1750-5836(07)00094-1 ; Haimour N. (1987), Kinetics of the reaction between carbon dioxide and methyldiethanolamine, Chem. Eng. Sci, 42, 1393, doi.org/10.1016/0009-2509(87)85011-X ; Jamal A. (2006), Kinetics of carbon dioxide absorption and desorption in aqueous alkanolamine solutions using a novel hemispherical contactor - I. Experimental apparatus and mathematical modeling, Chem. Eng. Sci, 61, 6571, doi.org/10.1016/j.ces.2006.04.046 ; Kierzkowska-Pawlak H. (2010), Kinetics of carbon dioxide absorption into aqueous MDEA solutions, Ecol. Chem. Eng. S, 17, 463. ; H Kierzkowska-Pawlak (2011), Numerical simulation of CO<sub>2</sub> absorption into aqueous MDEA solutions, Korean J. Chem. Eng, 29, 6. ; Knipe A. (1974), A fast response conductivity amplifier for chemical kinetics, J. Phys. E, 7, 586, doi.org/10.1088/0022-3735/7/7/025 ; Li J. (2007), Reaction kinetics of CO<sub>2</sub> in aqueous ethylenediamine, ethylethanolamine, and diethylmonoethanolamine solutions in the temperature range of 298-313 K, using the stopped-flow technique, Ind. Eng. Chem. Res, 46, 4426, doi.org/10.1021/ie0614982 ; Khorassani S. (2011), Establishing a new conductance stopped-flow apparatus to investigate the initial fast step of reaction between 1,1,1-trichloro-3-methyl-3-phospholene and methanol under a dry inert atmosphere, Analyst, 136, 1713, doi.org/10.1039/c0an00817f ; Ko J.-J. (2000), Kinetics of absorption of carbon dioxide into solutions of N-methyldiethanolamine + water, Chem. Eng. Sci, 55, 4139, doi.org/10.1016/S0009-2509(00)00079-8 ; Kohl A. (1997), Gas Purification. ; Littel R. (1991), Kinetics of carbon dioxide with tertiary amines in aqueous solution, AIChE J, 36, 1633, doi.org/10.1002/aic.690361103 ; Moniuk W. (2000), Absorption of CO<sub>2</sub> in aqueous solutions of N-methyldiethanolamine, Inż. Chem. i Proces, 21, 183. ; Notz R. (2011), CO<sub>2</sub> capture for fossil fuel-fired power plants, Chem. Eng. Technol, 34, 163, doi.org/10.1002/ceat.201000491 ; Pani F. (1997), Kinetics of absorption of CO<sub>2</sub> in concentrated aqueous methyldiethanolamine solutions in the range 296 K to 343 K, J. Chem. Eng. Data, 42, 353, doi.org/10.1021/je960251g ; Pinsent B. (1956), The kinetics of combination of carbon dioxide with hydroxide ions, Trans. Faraday Soc, 52, 1512, doi.org/10.1039/TF9565201512 ; Pohorecki R. (1988), Kinetics of reaction between carbon dioxide and hydroxyl ions in aqueous electrolyte solutions, Chem. Eng. Sci, 43, 1677, doi.org/10.1016/0009-2509(88)85159-5 ; Ramachandran N. (2006), Kinetics of the absorption of CO<sub>2</sub> into mixed aqueous loaded solutions of monoethanolamine and methyldiethanolamine, Ind. Eng. Chem. Res, 45, 2608, doi.org/10.1021/ie0505716 ; Rinker E. (1995), Kinetics and modeling of carbon dioxide absorption into aqueous solutions of N-methylodiethanolamine, Chem. Eng. Sci, 50, 5, 755, doi.org/10.1016/0009-2509(94)00444-V ; Siemieniec M. (2012), Reaction kinetics of CO<sub>2</sub> in aqueous diethanolamine solutions in the temperature range of 293÷313 K using the stopped-flow technique, Ecological Chem. Eng. S, 19, 55, doi.org/10.2478/v10216-011-0006-y ; Steeneveldt R. (2006), CO<sub>2</sub> capture and storage. Closing the knowing-doing gap, Chem. Eng. Res. Des, 84, 739, doi.org/10.1205/cherd05049 ; Vaidya P. (2007), CO<sub>2</sub>-alkanolamine reaction kinetics: A review of recent studies, Chem. Eng. Technol, 30, 1467, doi.org/10.1002/ceat.200700268 ; S. van Loo (2007), The removal of carbon dioxide with activated solutions of methyldiethanol-amine, J. Pet. Sci. Eng, 55, 135, doi.org/10.1016/j.petrol.2006.04.017 ; Zhang X. (2002), Kinetics of absorption of CO<sub>2</sub> into aqueous solution of MDEA blended with DEA, Ind. Eng. Chem. Res, 41, 1135, doi.org/10.1021/ie010605jEditorial Board
Editorial Board
Ali Mesbach, UC Berkeley, USA
Anna Gancarczyk, Institute of Chemical Engineering, Polish Academy of Sciences, Poland
Anna Trusek, Wrocław University of Science and Technology, Poland
Bettina Muster-Slawitsch, AAE Intec, Austria
Daria Camilla Boffito, Polytechnique Montreal, Canada
Donata Konopacka-Łyskawa, Gdańsk University of Technology, Poland
Dorota Antos, Rzeszów University of Technology, Poland
Evgeny Rebrov, University of Warwick, UK
Georgios Stefanidis, National Technical University of Athens, Greece
Ireneusz Grubecki, Bydgoszcz Univeristy of Science and Technology, Poland
Johan Tinge, Fibrant B.V., The Netherlands
Katarzyna Bizon, Cracow University of Technology, Poland
Katarzyna Szymańska, Silesian University of Technology, Poland
Marcin Bizukojć, Łódź University of Technology, Poland
Marek Ochowiak, Poznań University of Technology, Poland
Mirko Skiborowski, Hamburg University of Technology, Germany
Nikola Nikacevic, University of Belgrade, Serbia
Rafał Rakoczy, West Pomeranian University of Technology, Poland
Richard Lakerveld, Hong Kong University of Science and Technology, Hong Kong
Tom van Gerven, KU Leuven, Belgium
Tomasz Sosnowski, Warsaw University of Technology, Poland