Corona current concept in lightning return-stroke models of engineering type

Journal title

Archives of Electrical Engineering




vol. 59


No 3 - 4 December



lightning ; corona sheath ; return stroke model ; continuity equation

Divisions of PAS

Nauki Techniczne




Polish Academy of Sciences




Artykuły / Articles


DOI: 10.2478/s10171-010-0014-z ; ISSN: 1427-4221 ; eISSN: 2300-2506


Bajorek J. (2004), Modelowanie systemów ochrony urządzeń elektrycznych i elektronicznych przed piorunowym impulsem elektromagnetycznym. Folia Scientiarum Universitatis Technicae Resoviensis nr 214, Elektrotechnika, 26, 35. ; Rakov V. (1998), Review and evaluation of Lightning Return Stroke Models Including Some Aspects of Their Application, IEEE Transaction on EMC, 40, 4. ; Agrawal A. (1980), Transient response of multiconductor transmission lines excited by a nonuniform electromagnetic field, IEEE Trans. Electromagn. Compat, 22, 119. ; Cooray V. (2003), On the concepts used in return stroke models applied in engineering practice, IEEE Trans. Electromagn. Compat, 45, 101. ; Maslowski G. (2006), A study of the lightning channel corona sheath, J. Geophys. Res, 111, JD006858 ; Masłowski G. (2007), Equivalency of lightning return stroke models employing lumped and distributed current sources, IEEE Trans. Electromagn. Compat, 123. ; Rakov V. (2003), Lightning: Physics and Effects. ; Baum C. (1990), Lightning Electromagnetics, 17. ; Kodali V. (2005), Triggered lightning properties inferred from measured currents and very close electric fields, Atmospheric Research, 75, 335. ; Heckman S. (1989), Corona envelopes and lightning currents, J. Geophys. Res, 94, 13287. ; Wagner C. (1958), The lightning stroke (1), AIEE Trans, 77, 229. ; Rao M. (1966), Lateral corona currents from the return stroke channel and the slow field change after the return stroke in a lightning discharge, J. Geophys. Res, 71, 2811. ; Lin Y. (1980), Lightning return stroke models, J. Geophys. Res, 85, 1571. ; Arima I. (1998), Experimental study of the corona current in lightning return stroke, null. ; Cebrera V. (1992), On the mechanism of space charge generation and neutralization in a coaxial cylindrical configuration, J. Geophys. Res, 38, 187. ; Cooray V. (1995), A model for positive return strokes, null. ; Cooray V. (1993), A model for subsequent return strokes, J. Electrostat, 30, 343. ; Cooray V. (1997), A model for negative first return strokes in lightning flashes, Physica Scripta, 55, 119. ; Takagi N. (1998), Expansion of the luminous region of the lightning return stroke channel, J. Geophys. Res, 103, D12, 14131. ; Miki M. (2002), Electric fields near triggered lightning channels measured with Pockels sensors, J. Geophys. Res, 107, ; Gorin B. (1985), Mathematical modeling of the lightning return stroke, Elektrichestvo, 4, 10. ; Maslowski G. (2009), An improved model for prediction of the dynamics of lightning channel corona sheath, null. ; Masłowski G. (2010), Electrical structure of the lightning-channel corona sheath, null, 1224. ; Rakov V. (1991), A modified transmission line model for lightning return stroke field calculations, null, 229. ; Thottappillil R. (1997), Distribution of charge along the lightning channel: Relation to remote electric and magnetic fields and to return-stroke models, J. Geophys. Res, 102, 6987. ; Uman M. (1969), Magnetic field of the lightning return stroke, J. Geophys. Res, 74, 6899. ; Rakov V. (1987), Calculated electromagnetic fields of lightning return stroke, Tekh. Elektrodinam, 1, 87. ; Nucci C. (1988), On lightning return stroke models for LEMP calculations, null. ; Bruce C. (1941), The Lightning and Spark Discharges, Nature, 147, 805. ; Heidler F. (1985), Traveling current source model for LEMP calculation, null, 157. ; Diendorfer G. (1990), An improved return stroke model with specified channel-base current, J. Geophys. Res, 95, 13, 621. ; Rachidi F. (1990), On the Master, Uman, Lin, Standler and the Modified Transmission Line Lightning Return Stroke Current Models, J. Geophys. Res, 95, 20389. ; Rachidi F. (2002), Effect of vertically extended strike object on the distribution of current along the lightning channel, J. Geophys. Res, 107, ; Masłowski G. (null), Some inferences from radial electric fields measured inside the lightning-channel corona sheath, IEEE Trans. Electromagn. Compat.