Cloning and Expression Analysis of LeTIR1 in Tomato

Journal title

Acta Biologica Cracoviensia s. Botanica




vol. 53


No 2



tomato ; TIR ; auxin receptor ; IAA ; semi-quantitative RT-PCR

Divisions of PAS

Nauki Biologiczne i Rolnicze


Biological Commission of the Polish Academy of Sciences – Cracow Branch




Artykuły / Articles


DOI: 10.2478/v10182-011-0021-4 ; ISSN 0001-5296 ; eISSN 1898-0295


Callis J. (2005), Auxin action, Nature, 435, 436, ; N Dharmasiri (2003), Auxin action in a cell free system, Current Biology, 13, 1418, ; Dharmasiri N. (2005a), The F-box protein TIR1 is an auxin receptor, Nature, 435, 436. ; Dharmasiri N. (2005b), Plant development is regulated by a family of auxin: receptor F-box proteins, Developmental Cell, 9, 109, ; Gagne J. (2002), The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in <i>Arabidopsis.</i>, Proceedings of the National Academy of Sciences, USA, 99, 11519, ; Gagne J. (2004), <i>Arabidopsis</i> EIN3-binding F-box 1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation, Proceedings of the National Academy of Sciences, USA, 101, 6803, ; Gray W. (2001), Auxin regulates SCF<sup>TIR1</sup>-dependent degradation of Aux/IAA proteins, Nature, 414, 271, ; Kepinski S. (2005), The <i>Arabidopsis</i> F-box protein TIR is an auxin receptor, Nature, 435, 446, ; Kojima K. (2002), Distribution and transport of IAA in tomato plants, Plant Growth Regulation, 37, 249, ; Leyser O. (2005), Auxin distribution and plant pattern formation: how many angels can dance on the point of PIN?, Cell, 121, 819, ; Moon J. (2004), The ubiquitin-proteasome pathway and plant development, The Plant Cell, 16, 3181, ; Pandolfini T. (2007), Molecular dissection of the role of auxin in fruit initiation, Trends in Plant Science, 12, 327, ; Ruegger M. (1997), Reduced naphthylphthalamic acid binding in the <i>tir3</i> mutant of <i>Arabidopsis</i> is associated with a reduction in polar auxin transport and diverse morphological defects, The Plant Cell, 9, 745, ; Wang H. (2005), The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis, The Plant Cell, 17, 2676, ; Willemsen V. (2004), Mechanisms of pattern formation in plant embryo genesis, Annual Review of Genetics, 38, 587, ; Aw Woodward (2005), Auxin: regulation, action, and interaction, Annals of Botany, 95, 707,