The Usefulness of RAPD and AFLP Markers for Determining Genetic Similarity in Rye (Secale L.) Species and Subspecies

Journal title

Acta Biologica Cracoviensia s. Botanica




vol. 52


No 1


Divisions of PAS

Nauki Biologiczne i Rolnicze


Biological Commission of the Polish Academy of Sciences – Cracow Branch




DOI: 10.2478/v10182-010-0003-y ; ISSN 0001-5296 ; eISSN 1898-0295


Broda Z. (2004), Przyszłość hodowli roślin w diagnostyce molekularnej, Biuletyn Hodowli Roślin i Nasiennictwa, 2, 16. ; Bednarek P. (2003), Saturating rye genetic map with amplified fragment length polymorphism (AFLP) and random amplified polymorphic DNA (RAPD) markers, Journal of Applied Genetic, 44, 1, 21. ; Chikmawati T. (2005), Phylogenetic relationships among <i>Secale</i> species revealed by amplified fragment length polymorphisms, Genome, 48, 792. ; Colombo C. (2000), Diversity within <i>American cassava</i> germ plasm based on RAPD markers, Genetics and Molecular Biology, 23, 1, 189, ; Chrząstek M. (2006), Ocena zróżnicowania genetycznego polskich odmian owsa (<i>Avena sativa</i> L.), Acta Agrophysica, 8, 2, 319. ; Chrząstek M. (2003), Analiza molekularna i cytologiczna oraz ocena niektórych cech ilościowych mieszańców międzygatunkowych <i>Avena sativa</i> L. x <i>Avena fatua</i> L, Biuletyn IHAR, 230, 387. ; Chwedorzewska K. (2006), Studies on genetic changes in rye samples (<i>Secale cereale</i> L.) maintained in a seed bank, Cellular and Molecular Biology Letters, 11, 338. ; Drossou A. (2004), Genome and species relationships in genus Avena based on RAPD and AFLP molecular markers, Theoretical and Applied Genetics, 109, 48. ; Galeta M. (2007), Comparative analysis of genetic relationship and diagnostic markers of several taxa of <i>Guizotia Cass. (Asteraceae)</i> as revealed by AFLPs and RAPDs, Plant Systematics and Evolution, 265, 221. ; Hallden C. (1994), Evaluation of RFLP and RAPD markers in a comparison of <i>Brassica napus</i> breeding lines, Theoretical and Applied Genetics, 88, 123. ; Koch G. (1997), Phylogenetic relationships of industrial chicory varieties revealed by RAPD and AFLP, Agronomie, 17, 323. ; Kuczyńska A. (2003), Zastosowanie markerów RAPD do określenia podobieństwa genetycznego odmian jęczmienia ozimego (<i>Hordeum vulgare</i> L.), Biuletyn IHAR, 226/227/1, 81. ; Matos M. (2001), Phylogenetic relationships among Portuguese rye based on isoenzyme, RAPD and ISSR markers, Hereditas, 134, 299. ; Nei M. (1979), Mathematical model for studying genetic variation in terms of restriction endonucleases, null, 5269. ; Nowosielski J. (2002), Molecular research on the genetic diversity of Polish varieties and landraces of <i>Phaseolus coccineus</i> L. and <i>Phaseolus vulgaris</i> L. Using the RAPD and AFLP method, Cellular and Molecular Biology Letters, 7, 753. ; Paczos-Grzęda E. (2004), Pedigree, RAPD and simplified AFLP-based assessment of genetic relationships among <i>Avena sativa</i> L. cultivars, Euphytica, 138, 13. ; Paczos-Grzęda E. (2005), Badania genetyczno-hodowlane mieszańców heksaploidalnego owsa <i>Avena sativa</i> L. x <i>Avena byzantina</i> Koch, Biuletyn IHAR, 236, 193. ; Paran I. (1998), Variation in <i>Capsicum annuum</i> revealed by RAPD and AFLP markers, Euphytica, 99, 167. ; Puecher D. (2001), Genetic variability measures among <i>Bromus catharticus</i> Vahl. Populations and cultivars with RAPD and AFLP markers, Euphytica, 121, 229. ; Seman K. (2003), Genetic diversity and differentiation in Ethiopian populations of <i>Phytolacca dodecandra</i> as revealed by AFLP and RAPD analyses, Genetic Resources and Crop Evolution, 50, 649. ; Shang H. (2006), Genetic diversity and polygenetic relationships in the genus <i>Secale</i> L. (rye) based on <i>Secale cereale</i> microsatellite markers, Genetics and Molecular Biology, 29, 4, 685. ; Sztuba-Solińska J. (2005), Systemy markerów molekularnych i ich zastosowanie w hodowli roślin, Kosmos, 54, 227. ; Thompson D. (1995), Single step protocol for preparation of plant tissue for analysis by PCR, Biotechniques, 19, 394. ; Williams C. (1993), Phenotypic relationships and levels of variability detected by restriction fragment length polymorphism and random amplified polymorphic DNA analysis of cultivated and wild accessions of, Lycopersicon esculentum. Genome, 36, 619. ; Vaillancourt A. (2008), Identification, characterisation, and chromosome locations of rye and wheat specific USSR and SCAR markers useful for breeding purposes, Euphytica, 159, 297. ; Vos P. (1995), AFLP: a new technique for DNA fingerprinting, Nuclear Acids Research, 23, 4407.