Atrazine toxicity in marine algae Chlorella vulgaris and in E. coli lux and gfp biosensor tests

Journal title

Archives of Environmental Protection




vol. 49


No 3


Matejczyk, Marzena : Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences,Department of Chemistry, Biology and Biotechnology, Bialystok, Poland ; Kondzior, Paweł : Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences,Department of Chemistry, Biology and Biotechnology, Bialystok, Poland ; Ofman, Piotr : Bialystok University of Technology, Department of Environmental Engineering Technology,Bialystok, Poland ; Juszczuk-Kubiak, Edyta : Institute of Agricultural and Food Biotechnology-State Research Institute, Laboratory of Biotechnologyand Molecular Engineering, Warsaw, Poland ; Świsłocka, Renata : Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences,Department of Chemistry, Biology and Biotechnology, Bialystok, Poland ; Łaska, Grażyna : Department of Agri-Food Engineering and Environmental Management,Bialystok University of Technology, Bialystok, Poland ; Wiater, Józefa : Bialystok University of Technology, Department of Agricultural and Food Engineeringand Environmental Management, Bialystok, Poland ; Lewandowski, Włodzimierz : Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences,Department of Chemistry, Biology and Biotechnology, Bialystok, Poland



ecotoxicology ; atrazine ; Chlorella vulgaris ; bioluminescent biosensors ; water contamination

Divisions of PAS

Nauki Techniczne




Polish Academy of Sciences


  1. Akhtar, N., Khan, M. F., Tabassum, S. & Zahran, E. (2021). Adverse effects of atrazine on blood parameters, biochemical profile, and genotoxicity of snow trout (Schizothorax plagiostomus). Saudi Journal of Biological Sciences, 28, pp. 1999–2003. DOI:10.1016/j.sjbs.2021.01.001
  2. Ali, S.A., Mittal, D. & Kaur G. (2021). In situ monitoring of xenobiotics using genetically engineered whole cell based microbial biosensors: recent advances and outlook. World Journal of Microbiology and Biotechnology, 7, pp. 37–81. DOI:10.21203/
  3. Bae, J. W., Seo, H. B., Belkin, S. & Gu M. B. (2020). An optical detection module-based biosensor using fortified bacterial beads for soil toxicity assessment. Analitical and Bioanalitical Chemistry, 412, pp. 3373–3381. DOI:10.1007/s00216-020-02469-z
  4. Barsanti, L. & Gualtieri, P. (2014). Algae. Anatomy, Biochemistry, and Biotechnology (2 ed). CRC Press. Taylor & Francis Group. DOI:10.1201/b16544
  5. Camuel, A., Guieysse, B., Alcántara, C., & Béchet, Q. (2017). Fast algal ecotoxicity assessment: influence of light intensity and exposure time on Chlorella vulgaris inhibition by atrazine and DCMU. Ecotoxicology and Environmental Safety, 140, pp. 141–147. DOI:10.1016/j.ecoenv.2017.02.013
  6. Chen, J., Liu, J., Wu, S., Liu, W., Xia, Y., Zhao, J., Yang, Y., Peng, Y. & Zhao, S. (2021). Atrazine promoted epithelial ovarian cancer cells proliferation and metastasis by inducing low dose reactive oxygen species (ROS). Iran Journal of Biotechnology, 19, pp. 2623 – 2635. DOI:10.30498/IJB.2021.2623
  7. Dębowski, M. (2018). The use of microalgae biomass in engineering and environmental protection technologies. Polish Journal of Natural Sciences, 27, pp. 151-164. DOI:10.3390/en14196025
  8. Fareed, A., Hussain, A., Nawaz, M., Imran, M., Ali, Z. & Haq, S. U. (2021). The impact of prolonged use and oxidative degradation of Atrazine by Fenton and photo-Fenton processes. Environmental Technology and Innovation, 24, pp. 18-32. 101840. DOPI:10.1016/j.eti.2021.101840
  9. Jiang, B., Li, G., Xing, Y., Zhang, D., Jia, J., Cui, Z., Luan, X. & Tang, H. (2017). A whole cell bioreporter assay for quantitative genotoxicity evaluation of environmental samples. Chemosphere, 184, pp. 384–392. DOI:10.1016/j.chemosphere.2017.05.159
  10. Kamaz, M., Jones, S. M., Qian, X., Watts, M. J., Zhang, W. & Wickramasinghe, S. R. (2020). Atrazine removal from municipal wastewater using a membrane bioreactor. International Journal of Environmental Research and Public Health, 17, pp. 2567-2578. DOI:10.3390/ijerph17072567
  11. Kopcewicz, J., Lewak, S., Jaworski, K., Tretyn, A., Gniazdowska, A., Szmidt-Jaworska, A., Kęsy, J., Gabryś, H., Szymańska, M., Hawrylak-Nowak, B., Strzałka, K., Ciereszko, I., Rychter, A. M. & Tyburski, J. (2020). Plant physiology Polish Scientific Publishers PWN, Warsaw, Poland. (in Polish).
  12. Lu, Q., Zhou, X., Liu, R., Shi, G., Zheng, N., Gao, G. & Wang, Y. (2023). Impacts of a bacterial algicide on metabolic pathways in Chlorella vulgaris. Ecotoxicology and Environmental Safety, 249, pp. 1–13. DOI:10.1016/j.ecoenv.2022.114451
  13. Majewska, M., Harshkova, D., Pokora, W., Baścik-Remisiewicz, A., Tułodziecki, S. & Aksmann, A. (2021). Does diclofenac act like a photosynthetic herbicide on green algae? Chlamydomonas reinhardtii synchronous culture-based study with atrazine as reference. Ecotoxicology and Environmental Safety, 208, 111630. DOI:10.1016/j.ecoenv.2020.111630
  14. Malcata, F. X. (2019). Marine macro- and microalgae: an overview. CRC Press Taylor & Francis Group. DOI:10.1201/9781315119441
  15. Matejczyk, M., Ofman, P., Dąbrowska, K., Świsłocka, R. & Lewandowski, W. (2020a). The study of biological activity of transformation products of dicoflenac and its interaction with chlorogenic acid. Journal of Environmental Sciences, 91, pp. 128–141. DOI:10.1016/j.jes.2020.01.022
  16. Matejczyk, M., Ofman, P., Dąbrowska, K., Świsłocka, R. & Lewandowski, W. (2020b). Evaluation of the biological impact of the mixtures of diclofenac with its biodegradation metabolites 4’-hydroxydiclofenac and 5-hydroxydiclofenac on Escherichia coli. DCF synergistic effect with caffeic acid. Archives of Environmental Protection, 46, pp. 32–53. DOI:10.24425/aep.2020.135760
  17. Matejczyk, M., Ofman, P., Dąbrowska, K., Świsłocka, R. & Lewandowski, W. (2020c). Synergistic interaction of diclofenac and its metabolites with selected antibiotics and amygdalin in wastewaters. Environmental Research, 186, 109511. DOI:10.1016/j.envres.2020.109511
  18. Matejczyk, M., Ofman, P., Parcheta, M., Świsłocka, R. & Lewandowski, W. (2022). The study of biological activity of mandelic acid and its alkali metal salts in wastewaters. Environmental Research, 205, 112429. DOI:10.1016/j.envres.2021.112429
  19. Melamed, S., Lalush, C., Elad, T., Yagur-Krol, S., Belkin, S. & Pedahzur, R. (2012). A bacterial reporter panel for the detection and classification of antibiotic substances: Detection and classification of antibiotics. Microbiology and Biotechnology, 5, pp. 536–548. DOI:10.1111/j.1751-7915.2012.00333.x
  20. Mofeed, J. & Moshleh, Y. (2013). Toxic responses and antioxidative enzymes activity of Scenedesmus obliquus exposed to fenhexamid and atrazine, alone and in mixture. Ecotoxicology and Environmental Safety, 95, pp. 234–240. DOI:10.1016/j.ecoenv.2013.05.023
  21. Moraskie, M., Roshid, H., O’Connor, G., Dikici, E., Zings, J. M., Deo, S. & Daunert, S. (2021). Microbial whole-cell biosensors: current applications, challenges, and future perspectives. Biosensors and Bioelectronics, 191, 113359. DOI:10.1016/j.bios.2021.113359
  22. Ozturk, M., Coskuner, K. A., Serdar, B., Atar, F. & Bilgili, E. (2022). Impact of white mistletoe (Viscum album ssp. abietis) infection severity on morphology, anatomy and photosynthetic pigment content of the needles of cilicican fir (Abies cilicica). Flora, 294, 152135. DOI:10.1016/j.flora.2022.152135
  23. Qian, H., Sheng, G., Liu, W., Lu, Y., Liu, Z. & Fu, Z. (2008). Inhibitory effects of atrazine on Chlorella vulgaris as assessed by real-time polymerase chain reaction. Environmental Toxicology and Chemistry, 27, pp. 182–187. DOI:10.1897/07-163.1
  24. Rojas-Villacorta, W., Rojas-Flores, S., De La Cruz-Noriega, M., Espino, H. C., Diaz, F. & Cardenas, M. G. (2022). Microbial biosensors for wastewater monitoring: mini review. Processes, 10, pp. 2-13. DOI:10.3390/pr10102002
  25. Roustan, A., Aye, M., De Meo, M. & Giorgio, C. D. (2014). Genotoxicity of mixtures of glyphosate and atrazine and their environmental transformation products before and after photoactivation. Chemosphere, 108, pp. 93-100. DOI:10.1016/j.chemosphere.2014.02.079
  26. Santos, K. C. & Martinez, C. B. R. (2014). Genotoxic and biochemical effects of atrazine and Roundups, alone and in combination, on the Asian clam Corbicula fluminea. Ecotoxicology and Environmental Safety, 100, pp. 7-14. DOI:10.1016/j.ecoenv.2013.11.014
  27. Shan, W., Hu, W., Wen, Y., Ding, X., Ma, X., Yan, W. & Xia, Y. (2021). Evaluation of atrazine neurodevelopment toxicity in vitro-application of hESC-based neural differentiation model. Reproductive Toxicology, 103, pp. 149-158. DOI:10.1016/j.reprotox.2021.06.009
  28. Silveyra, G. R., Medesani, D. A. & Rodríguez, E. M. (2022). Effects of the herbicide atrazine on Crustacean Reproduction. Mini-Review. Frontiers in Physiology, 13, pp. 1-5. DOI:10.3389/fphys.2022.926492
  29. Sivathanu, B. & Palaniswamy, S. (2012). Purification and characterization of carotenoids from green algae Chlorococcum humicola by HPLC-NMR and LC-MS-APCI. Biomedical Prevention and Nutrition, 2, pp. 276-282. DOI:10.1016/j.bionut.2012.04.006
  30. Song,Y., Jiang, B., Tian, S., Tang, H., Liu, Z., Li, C., Jia, J., Huang, W. E., Zhang, X. & Li, G. (2014). A whole cell bioreporter approach for the genotoxicity assessment of bioavailability of toxic compounds in contaminated soil in China. Environmental Pollution, 195, pp. 178–184. DOI:10.1016/j.envpol.2014.08.024
  31. Su, Y., Cheng, Z., Chou, Y., Lin, S., Gao, L., Wang, Z., Bao, R. & Peng, L. (2022). Biodegradable and conventional microplastics posed similar toxicity to marine algae Chlorella vulgaris. Aquatic Toxicology, 244, 106097. DOI:10.1016/j.aquatox.2022.106097
  32. Sun, C., Xu, Y., Hu, N., Ma, J., Sun, S., Cao, W., Klobučar, G., Hu, C. & Zhao, Y. (2020). To evaluate the toxicity of atrazine on the freshwater microalgae Chlorella sp. using sensitive indices indicated by photosynthetic parameters. Chemosphere, 244, 125514. DOI:10.1016/j.chemosphere.2019.125514
  33. Węgrzyn, A. & Mazur, R. (2020). Regulatory mechanisms of photosynthesis light reactions in higher plants. Postępy Biochemii (Advances in biochemistry), 66, pp. 134-42. (in Polish). DOI:10.18388/pb.2020_325
  34. Woutersen, M., Belkin, S., Brouwer, B., Wezel, A. P. & Heringa, M. B. (2011). Are luminescent bacteria suitable for online detection and monitoring of toxic compounds in drinking water and its sources? Analitical and Bioanalitical Chemistry, 400, pp. 915-929. DOI:10.1007/s00216-010-4372-6
  35. Xiong, J. Q., Kurade, M. B., Abou-Shanab, R. A. J., Ji, M. K., Choi, J., Kim, J. O. & Jeon, B. H. (2016). Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate. Bioresources Technology, 205, pp. 183-90. DOI:10.1016/j.biortech.2016.01.038
  36. Yang, F., Gao, M., Lu, H., Wei, Y., Chi, H., Yang, T., Yuan, M., Fu, H., Zeng, W. & Liu, C. (2021). Effects of atrazine on chernozem microbial communities evaluated by traditional detection and modern sequencing technology. Microorganisms, 9, 1832. DOI:10.3390/microorganisms9091832
  37. Yang, H., Jiang, Y., Lu, K., Xiong, H., Zhang, Y. & Wei, W. (2021a). Herbicide atrazine exposure induce oxidative stress, immune dysfunction and WSSV proliferation in red swamp crayfish Procambarus clarkii. Chemosphere, 283, 131227. DOI:10.1016/j.chemosphere.2021.131227
  38. Zappi, D., Coronado, E., Soljan, V., Basile, G., Varani, G., Turems, M. & Giardi, M. (2021). A microbial sensor platform based on bacterial bioluminescence (luxAB) and green fluorescent protein (gfp) reporters for in situ monitoring of toxicity of wastewater nitrification process dynamics. Talanta, 221, pp. 1-8. DOI:10.1016/j.talanta.2020.121438
  39. Zhang, Y., Meng, D., Wang, Z., Guo, H. & Wang, Y. (2012). Oxidative stress response in two representative bacteria exposed to atrazine. FEMS Microbiology Letters, 334, pp. 95–101. DOI:10.1111/j.1574-6968.2012.02625.x
  40. Zhao, Y., Yunyang, L., Bao, H., Nan, J. & Xu, G. (2023). Rapid biodegradation of atrazine by a novel Paenarthrobacter ureafaciens ZY and its effects on soil native microbial community dynamic. Frontiers in Microbiology, 4, pp. 1-13. DOI:10.3389/fmicb.2022.1103168
  41. Zhu, Y., Elcin, E., Jiang, M., Li, B., Wang, H., Zhang, X. & Wang, Z. (2022). Use of whole-cell bioreporters to assess bioavailability of contaminants in aquatic systems. Frontiers in Chemistry, 10, 1018124. DOI:10.3389/fchem.2022.1018124






DOI: 10.24425/aep.2023.147331



Abstracting & Indexing

Abstracting & Indexing

Archives of Environmental Protection is covered by the following services:

AGRICOLA (National Agricultural Library)




BIOSIS Citation Index





Engineering Village


Google Scholar

Index Copernicus

Journal Citation Reports™

Journal TOCs






Ulrich's Periodicals Directory


Web of Science