Current status of phenolic pollution in urban lakes and its toxicity to cells – A case study of Xi’an, China

Journal title

Archives of Environmental Protection




vol. 49


No 1


Wang, Min : Xi’an University of Technology, China ; Zhang, Yutong : Xi’an University of Technology, China ; Sun, Jingxin : Xi’an University of Technology, China ; Huang, Chen : Xi’an University of Technology, China ; Zhai, Hongqin : Xi’an University of Technology, China



Urban lakes ; phenolic compounds ; pollution ; ecological risk assessment

Divisions of PAS

Nauki Techniczne




Polish Academy of Sciences


  1. Atieh, Y., Anis, E. & Kiarash, G. (2022). Quantitative evaluation senx3-regx3 gene of Mycobacterium tuberculosis by real-time RT-PCR assays for monitoring the response to anti-TB therapy. Gene Reports, 28, 101642. DOI:10.1016/j.genrep.2022.101642
  2. Biam, R.S., Robichaud, P.P. & Mbarik M. (2022). Loss of detection of fatty acid-metabolizing proteins in Western blot analyses – Impact of sample heating. Biochemical and Biophysical Research Communications, 607, pp. 110-116. DOI:10.1016/j.bbrc.2022.03.130
  3. Chen, M.H., Guo, M. & Liu D. (2017). Occurrence and distribution of typical endocrine disruptors in surface water and sediments from Taihu Lake and its tributaries. China Environmental Science, 37(11), pp. 4323-4332. (in Chinese)
  4. Diao, P.P., Chen, Q. & Wang R. (2017). Phenolic endocrine-disrupting compounds in the Pearl River Estuary: Occurrence, bioaccumulation and risk assessment. Science of The Total Environment, 584–585, pp. 1100-1107. DOI:10.1016/j.scitotenv.2017.01.169.
  5. Dong, J., Sun, L.N. & Chen, R.H. (2009). A study on the pollution of chlorophenol compounds in the surface water of the pearl river estuary area. Environmental Science & Technology, 32(07), pp. 82-85. (in Chinese)
  6. Duan, X.Y., Li, Y.X. & Li, X.G. (2014). Alkylphenols in surface sediments of the Yellow Sea and East China Sea inner shelf: Occurrence, distribution and fate. Chemosphere, 107, pp. 265-273. DOI:10.1016/j.chemosphere.2013.12.054
  7. Fan, Z.L., Hu, J. & An, W. (2013). Detection and occurrence of chlorinated byproducts of bisphenol A, nonylphenol, and estrogens in drinking water of China: Comparison to the parent compounds. Environmental Science&Technology, 47(19), pp. 10841-10850. DOI:10.1021/es401504a
  8. Hernando, M.D., Mezcua, M. & Fernández-Alba, A.R. (2006). Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta, 69(2), pp. 334-342. DOI:10.1016/j.talanta.2005.09.037
  9. Hodaka, K., Hidekazu, O. & Mayuri I. (2004). Endocrine disrupter nonylphenol and bisphenol A contamination in Okinawa and Ishigaki Islands, Japan––within coral reefs and adjacent river mouths. Chemosphere, 55(11), pp. 1519-1527. DOI:10.1016/j.chemosphere.2004.01.032
  10. Hu, S.L., Ji, J.Y. & Chen, R. (2016). Analysis of eutrophication status and causes of urban landscape water body in xi'an. Environmental Monitoring Management and Technology, 28(05), pp. 62-65.(in Chinese)
  11. Kong, M., Bu Y.Q. & Zhang Q. (2021). Distribution, abundance, and risk assessment of selected antibiotics in a shallow freshwater body used for drinking water. China.Journal of Environmental Management, 280, pp. 111738. DOI:10.1016/j.jenvman.2020.111738
  12. Legler, J., Zeinstra, L.M. & Schuitemaker, F. (2002). Comparison of in vivo and in vitro reporter gene assays for short-term screening of estrogenic activity. Environ Sci Technol, 36(20) , pp. 4410-4415. DOI: 10.1021/es010323a
  13. Li, H.J., Li, H.X. & Shi, X.M. (2019). Pollution charasteristics of heavy metals and ecological risk assessment for the surface sediments of the lakes in Xi’an. Resources And Environment In Arid Areas, 33(02), pp. 122-126. DOI:10.13448/j.cnki.jalre.2019.051.(in Chinese)
  14. Liang, J.J. & Gu, A.H. (2021). Multigenerational and cross-generational effect of environmental endocrine disruptors on reproductive system in male animals. Chinese Journal of Public Health, 37(02), pp. 375-380. (in Chinese)
  15. Liu, Q.,Wang, S. & Xu, J.J. (2017). Analysis of phytoplankton community structure and water quality status in Hancheng Lake, Xi'an. Safety and Environmental Engineering, 24(03), pp. 48-56. DOI:10.13578/j.cnki.issn.1671-1556.2017.03.009. (in Chinese)
  16. Liu, Y.H., Zhang, S.H. & Ji, G.X. (2017). Occurrence, distribution and risk assessment of suspected endocrine-disrupting chemicals in surface water and suspended particulate matter of Yangtze River (Nanjing section). Ecotoxicology and Environmental Safety 135, pp. 90-97. DOI:10.1016/j.ecoenv.2016.09.035
  17. Lv, Y.Z., Zhao, J.L. & Yao, L. (2019). Bioaccumulation of phenolic endocrine disrupting chemicals in the plasma of wild fish from Yangtze River, China. Environmental chemistry. 38(03), pp. 443-453. (in Chinese)
  18. Ministry of Ecology and Environment of the People's Republic of China. (2017). Water quality ---determinnation of the chemical oxygen demand-dichromate method. (in Chinese)
  19. Ministry of Ecology and Environment of the People's Republic of China. (2013). Water quality ---determination of total phosphorus-Flow injection analysis (FIA) and ammonium molybdate spectrophotometry. (in Chinese)
  20. Ministry of Ecology and Environment of the People's Republic of China. (2012). Water quality ---determination of total nitrogen-Alkaline potassium persulfate digestion UV spectrophotometric method. (in Chinese)
  21. Ministry of Ecology and Environment of the People's Republic of China. (2009). Water quality ---determination of ammonia nitrogen-Nessler’s reagent spectrophotometry. (in Chinese)
  22. Ministry of Ecology and Environment of the People's Republic of China.(2009).Water quality ---determination of dissolved oxgen-Electrochemical probe method. (in Chinese)
  23. Ministry of Ecology and Environment of the People's Republic of China. (2020). Water quality ---determination of pH-Electrode method. (in Chinese)
  24. Ministry of Ecology and Environment of the People's Republic of China. (2009). Water quality sampling---technical regulation of the preservation and handling of samples. (in Chinese)
  25. Namita, P., Ankita, P. & Mitali, M.S. (2022). A comprehensive review on eco-toxicity and biodegradation of phenolics: Recent progress and future outlook. Environmental Technology & Innovation, 27, 102423. DOI:10.1016/j.eti.2022.102423.
  26. Peranandam, T., Kulanthaivel, L. & Shanmugam, V. (2014). Efficiency of lycopene against reproductive and developmental toxicity of Bisphenol A in male Sprague Dawley rats. Biomedicine & Preventive Nutrition, 4(4), pp. 491-498. DOI:10.1016/j.bionut.2014.07.008
  27. Qiu, L.N., Yun, X. & Na, G.S. (2015). On the bioaccumulation and biomagnification of phenols endocrine disruptors in the organisms in the coast of Northern Yellow Sea. Journal of Safety and Environment, 15(04), pp. 353-357. DOI:10.13637/j.issn.1009-6094.2015.04.074.(in Chinese)
  28. Schultis T. & Metzger J.W. (2004). Determination of estrogenic activity by LYES-assay (yeast estrogen screen-assay assisted by enzymatic digestion with lyticase). Chemosphere, 57(11), pp. 1649-1655. DOI:10.1016/j.chemosphere.2004.06.027
  29. Standnicka, J., Schirmer, K. & Ashauer, R. (2012). Predicting concentrations of organic chemicals in fish by using toxicokinetic models. Environmental Science &Technology, 46(6), pp. 3273-3280. DOI:10.1021/es2043728
  30. Sui, Q., Huang, J. & Yu, G. (2009). Priority Analysis for Controlling Endocrine Disrupting Chemicals in Municipal Wastewater Treatment Plants of China. Environmental Science, 30(02), pp. 384-390. DOI:10.13227/j.hjkx.2009.02.013. (in Chinese)
  31. Sun, Y., Huang, H. & Hu, H.Y. (2010). Concentration and Ecological Risk Level of Estrogenic Endocrine-Disrupting Chemicals in the Effluents from Wastewater Treatment Plants. Environmental Science Research, 23(12), pp. 1488-1493. DOI:10.13198/j.res.2010.12.46.suny.005. (in Chinese)
  32. Takuo, K. & Kunio, K. (1996). Studies on the mechanism of toxicity of chlorophenols found in fish through quantitative structure-activity relationships. Water Research, 30(2), pp. 393-399. DOI:10.1016/0043-1354(95)00152-2
  33. Tan, R.J., Li, Z.S. & Liu, R.X. (2015). PContamination Level of Endocrine Disrupting Compounds in Natural Aquatic Environment. Anhui Agricultural Sciences, 43(23), 167-169+288. DOI:10.13989/j.cnki.0517-6611.2015.23.067. (in Chinese)
  34. Tanaka, H., Yakou, Y. & Takahashi, A. (2001). Comparison between estrogenicities estimated from DNA recombinant yeast assay and from chemical analyses of endocrine disruptors during sewage treatment. Water Sci Technol, 43 (2), pp. 125-132. DOI:10.2166/wst.2001.0081
  35. Tao, S.Y., Wang, L.H. & Zhu, Z.L. (2019). Adverse effects of bisphenol A on Sertoli cell blood-testis barrier in rare minnow Gobiocypris rarus. Ecotoxicology and Environmental Safety, 171, pp. 475-483. DOI:10.1016/j.ecoenv.2019.01.007
  36. Tülay, A.Ö., Önder, H.Ö. & Songül, Z.B. (2002). Removal of phenolic compounds from rubber–textile wastewaters by physico-chemical methods. Chemical Engineering and Processing. Process Intensification, 41(8), pp. 719-730. DOI:10.1016/S0255-2701(01)00189-1
  37. Wang, W. & Kurunthachalam, K. (2018). Inventory, loading and discharge of synthetic phenolic antioxidants and their metabolites in wastewater treatment plants. Water Research, 129, pp. 413-418. DOI:10.1016/j.watres.2017.11.028
  38. Wang, Z, Yang, XH, Fan, D.L. (2017). Ecological Risk Assessment of Triclocarban in Fresh Water of China by Species Sensitivity Distribution. Journal of Ecology and Rural Environment, 33(10), pp. 921-927. (in Chinese)
  39. Wei, H., Wang, J.W. & Yang, X.Y. (2017). Contamination characteristic and ecological risk of antibiotics in surface water of the Weihe Guanzhong section. China Environmental Science, 37(6), pp. 2255-5562. (in chinese)
  40. Yang, M.F., Zou, Y.Q. & Wang, X. (2022). Synthesis of intracellular polyhydroxyalkanoates (PHA) from mixed phenolic substrates in an acclimated consortium and the mechanisms of toxicity. Journal of Environmental Chemical Engineering, 10, (3), 107944. DOI:10.1016/j.jece.2022.107944.
  41. Yin, W., Fan, D.L. & Wang, Z. (2020). Pollution Characteristics and Ecological Risks of 7 Phenolic Compounds of High Concern in the Surface Water and Sediments of Tianjin, China. Asian Journal of Ecotoxicology, 15(01), pp. 230-241. (in Chinese)
  42. Yoel, S., Ann, S. & Monica, S. (2018). The influence of in vivo exposure to nonylphenol ethoxylate 10 (NP-10) on the ovarian reserve in a mouse model. Reproductive Toxicology, 81, pp. 246-252. DOI:10.1016/j.reprotox.2018.08.020
  43. Yousefi, H., Yahyazadeh, A. & Moradi Rufchahi, E.O. (2013). Spectral properties, biological activity and application of new 4-(benzyloxy)phenol derived azo dyes for polyester fiber dyeing. Journal of Molecular Liquids, 180, pp. 51-58. DOI:10.1016/j.molliq.2012.12.030
  44. Zhang, F., Lu, X. & Yang, X.H. (2017). Investigation Report on Water Environment of Hancheng Lake in Xi’an City. Journal of Xi'an University(Natural Science Edition), 20(05), 109-112, 117. (in Chinese)
  45. Zhang, Y.B. (2016). Application of fuzzy comprehensive evaluation method to the assessment of surface water environment quality with the example of surface water environment in Xi’an Qujiang Pool. Journal of Xi'an Shiyou University(Social Science Edition), 25(04), pp. 1-6. (in Chinese)
  46. Zhou, L.J., Ying, G.G. & Liu, S. (2012). Simultaneous determination of human and veterinary antibiotics in various environmental matrices by rapid resolution liquid chromatography electrospray ionization tandem mass spectrometry. Journal of Chromatography A, 1244, pp. 123-138 .DOI:10.1016/j.chroma.2012.04.076






DOI: 10.24425/aep.2023.144738



Abstracting & Indexing

Abstracting & Indexing

Archives of Environmental Protection is covered by the following services:

AGRICOLA (National Agricultural Library)




BIOSIS Citation Index





Engineering Village


Google Scholar

Index Copernicus

Journal Citation Reports™

Journal TOCs






Ulrich's Periodicals Directory


Web of Science