Optimization of the trolley mechanism acceleration during tower crane steady slewing

Journal title

Archive of Mechanical Engineering




vol. 69


No 3


Loveikin, Viatcheslav : National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine ; Romasevych, Yuriy : National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine ; Loveikin, Andriy : Taras Shevchenko National University of Kyiv, Ukraine ; Korobko, Mykola : National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine



trolley ; optimization ; movement ; criteria ; crane

Divisions of PAS

Nauki Techniczne




Polish Academy of Sciences, Committee on Machine Building


[1] Y. Qian and Y. Fang. Switching logic-based nonlinear feedback control of offshore ship-mounted tower cranes: a disturbance observer-based approach. IEEE Transactions on Automation Science and Engineering, 16(3):1125–1136, 2018. doi: 10.1109/TASE.2018.2872621.
[2] M. Zhang, Y. Zhang, B. Ji, C. Ma, and X. Cheng. Modeling and energy-based sway reduction control for tower crane systems with double-pendulum and spherical-pendulum effects. Measurement and Control, 53(1-2):141–150, 2020. doi: 10.1177/0020294019877492.
[3] M. Zhang, Y. Zhang, H. Ouyang, C. Ma, and X. Cheng. Adaptive integral sliding mode control with payload sway reduction for 4-DOF tower crane systems. Nonlinear Dynamics, 99(7):2727–2741, 2020. doi: 10.1007/s11071-020-05471-3.
[4] T. Yang, N. Sun, H. Chen, and Y. Fang. Observer-based nonlinear control for tower cranes suffering from uncertain friction and actuator constraints with experimental verification. IEEE Transactions on Industrial Electronics, 68(7):6192–6204, 2021. doi: 10.1109/TIE.2020.2992972.
[5] J. Peng, J. Huang, and W. Singhose. Payload twisting dynamics and oscillation suppression of tower cranes during slewing motions. Nonlinear Dynamics, 98:1041–1048, 2019. doi: 10.1007/s11071-019-05247-4.
[6] S. Fasih, Z. Mohamed, A. Husain, L. Ramli, A. Abdullahi, and W. Anjum. Payload swing control of a tower crane using a neural network-based input shaper. Measurement and Control, 53(7-8):1171– 1182, 2020. doi: 10.1177/0020294020920895.
[7] D. Kruk and M. Sulowicz. AHRS based anti-sway tower crane controller. 2019 20th International Conference on Research and Education in Mechatronics (REM), 2019. doi: 10.1109/rem.2019.8744117.
[8] R.E. Samin and Z. Mohamed. Comparative assessment of anti-sway control strategy for tower crane system. AIP Conference Proceedings, 1883:020035, 2017. doi: 10.1063/1.5002053.
[9] S.-J. Kimmerle, M. Gerdts, and R. Herzog. Optimal control of an elastic crane-trolley-load system – a case study for optimal control of coupled ODE-PDE systems – (extended version with two appendices). Mathematical and Computer Modelling of Dynamical Systems, 24(2):182–206, 2018. doi: 10.1080/13873954.2017.1405046.
[10] V. Loveikin, Y. Romasevych, I. Kadykalo, and A. Liashko. Optimization of the swinging mode of the boom crane upon a complex integral criterion. Journal of Theoretical and Applied Mechanics, 49(3):285–296, 2019. doi: 10.7546/JTAM.
[11] Z. Liu, T. Yang, N. Sun, and Y. Fang. An antiswing trajectory planning method with state constraints for 4-DOF tower cranes: design and experiments. IEEE Access, 7:62142–62151, 2019. doi: 10.1109/ACCESS.2019.2915999.
[12] M. Böck and A. Kugi. Real-time nonlinear model predictive path-following control of a laboratory tower crane. IEEE Transactions on Control System Technology, 22(4):1461–1473, 2014. doi: 10.1109/TCST.2013.2280464.
[13] Š. Ileš, J. Matuško, and F. Kolonić. Sequential distributed predictive control of a 3D tower crane. Control Engineering Practice. 79:22–35, 2018. doi: 10.1016/j.conengprac.2018.07.001.
[14] K.W. Cassel. Variational Methods with Applications in Science and Engineering. Cambridge University Press, 2013. doi: 10.1017/CBO9781139136860.






DOI: 10.24425/ame.2022.140424 ; ISSN 0004-0738, e-ISSN 2300-1895