### Details

#### Title

Free vibration analysis of sandwich beam with porous FGM core in thermal environment using mesh-free approach#### Journal title

Archive of Mechanical Engineering#### Yearbook

2022#### Volume

vol. 69#### Issue

No 3#### Affiliation

Hung, Tran Quang : Faculty of Civil Engineering, The University of Da Nang - University of Science and Technology, Da Nang, Vietnam ; Tu, Tran Minh : Hanoi University of Civil Engineering, Hanoi, Vietnam ; Duc, Do Minh : Faculty of Civil Engineering, The University of Da Nang - University of Science and Technology, Da Nang, Vietnam#### Authors

#### Keywords

thermal vibration ; mesh-free method ; sandwich beam ; porous materials#### Divisions of PAS

Nauki Techniczne#### Coverage

471-496#### Publisher

Polish Academy of Sciences, Committee on Machine Building#### Bibliography

[1] D.K. Jha, T. Kant, and R.K. Singh. A critical review of recent research on functionally graded plates.*Composite Structures*, 96:833–849, 2013. doi: 10.1016/j.compstruct.2012.09.001.

[2] A.S. Sayyad and Y.M. Ghugal. Modeling and analysis of functionally graded sandwich beams: a review.

*Mechanics of Advanced Materials and Structures*, 26(21):1776–1795, 2019. doi: 10.1080/15376494.2018.1447178.

[3] A. Paul and D. Das. Non-linear thermal post-buckling analysis of FGM Timoshenko beam under non-uniform temperature rise across thickness.

*Engineering Science Technology, an International Journal*, 19(3):1608–1625, 2016. doi: 10.1016/j.jestch.2016.05.014.

[4] A. Fallah and M.M. Aghdam. Thermo-mechanical buckling and nonlinear free vibration analysis of functionally graded beams on nonlinear elastic foundation.

*Composites Part B: Engineering*, 43 (3):1523–1530, 2012. doi: 10.1016/j.compositesb.2011.08.041.

[5] A.I. Aria and M.I. Friswell. Computational hygro-thermal vibration and buckling analysis of functionally graded sandwich microbeams.

*Composites Part B: Engineering*, 165:785–797, 2019. doi: 10.1016/j.compositesb.2019.02.028.

[6] S.E. Esfahani, Y. Kiani, and M.R. Eslami. Non-linear thermal stability analysis of temperature dependent FGM beams supported on non-linear hardening elastic foundations.

*International Journal of Mechanical Sciences*, 69:10–20, 2013. doi: 10.1016/j.ijmecsci.2013.01.007.

[7] M. Lezgy-Nazargah. Fully coupled thermo-mechanical analysis of bi-directional FGM beams using NURBS isogeometric finite element approach.

*Aerospace Science and Technology*, 45:154–164, 2015. doi: 10.1016/j.ast.2015.05.006.

[8] L.C. Trinh, T.P. Vo, H.-T. Thai, and T.-K. Nguyen. An analytical method for the vibration and buckling of functionally graded beams under mechanical and thermal loads.

*Composites Part B: Engineering*, 100:152–163, 2016. doi: 10.1016/j.compositesb.2016.06.067.

[9] T.-K. Nguyen, B.-D. Nguyen, T.P. Vo, and H.-T. Thai. Hygro-thermal effects on vibration and thermal buckling behaviours of functionally graded beams.

*Composite Structures*, 176:1050–1060, 2017. doi: 10.1016/j.compstruct.2017.06.036.

[10] P. Malekzadeh and S. Monajjemzadeh. Dynamic response of functionally graded beams in a thermal environment under a moving load.

*Mechanics of Advanced Materials and Structures*, 23(3):248– 258, 2016. doi: 10.1080/15376494.2014.949930.

[11] N. Wattanasakulpong, B. Gangadhara Prusty, and D.W. Kelly. Thermal buckling and elastic vibration of third-order shear deformable functionally graded beams.

*International Journal of Mechanical Sciences*, 53(9):734–743, 2011. doi: 10.1016/j.ijmecsci.2011.06.005.

[12] S.C. Pradhan and T. Murmu. Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method.

*Journal of Sound and Vibration*, 321(1- 2):342–362, 2009. doi: 10.1016/j.jsv.2008.09.018.

[13] G.-L. She, F.-G. Yuan, and Y.-R. Ren. Thermal buckling and post-buckling analysis of functionally graded beams based on a general higher-order shear deformation theory.

*Applied Mathematical Modelling*, 47:340–357, 2017. doi: 10.1016/j.apm.2017.03.014.

[14] H.-S. Shen and Z.-X. Wang. Nonlinear analysis of shear deformable FGM beams resting on elastic foundations in thermal environments.

*International Journal of Mechanical Sciences*, 81:195–206, 2014. doi: 10.1016/j.ijmecsci.2014.02.020.

[15] T.T. Tran, N.H. Nguyen, T.V. Do, P.V. Minh, and N.D. Duc. Bending and thermal buckling of unsymmetric functionally graded sandwich beams in high-temperature environment based on a new third-order shear deformation theory.

*Journal of Sandwich Structures & Materials*, 23(3):906–930, 2021. doi: 10.1177/1099636219849268.

[16] A.R. Setoodeh, M. Ghorbanzadeh, and P. Malekzadeh. A two-dimensional free vibration analysis of functionally graded sandwich beams under thermal environment.

*Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science*, 226(12):2860–2873, 2012. doi: 10.1177/0954406212440669.

[17] L. Chu, G. Dui, and Y. Zheng. Thermally induced nonlinear dynamic analysis of temperature-dependent functionally graded flexoelectric nanobeams based on nonlocal simplified strain gradient elasticity theory.

*European Journal of Mechanics - A/Solids*, 82:103999, 2020. doi: 10.1016/j.euromechsol.2020.103999.

[18] Y. Fu, J. Wang, and Y. Mao. Nonlinear analysis of buckling, free vibration and dynamic stability for the piezoelectric functionally graded beams in thermal environment.

*Applied Mathematical Modelling*, 36(9):4324–4340, 2012. doi: 10.1016/j.apm.2011.11.059.

[19] W.-R. Chen, C.-S. Chen, and H. Chang. Thermal buckling analysis of functionally graded Euler-Bernoulli beams with temperature-dependent properties.

*Journal of Applied and Computational Mechanics*, 6(3):457–470, 2020. doi: 10.22055/JACM.2019.30449.1734.

[20] N. Wattanasakulpong and V. Ungbhakorn. Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities.

*Aerospace Science and Technology*, 32(1):111–120, 2014. doi: 10.1016/j.ast.2013.12.002.

[21] N. Wattanasakulpong and A. Chaikittiratana. Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory: Chebyshev collocation method.

*Meccanica*, 50(5):1331– 1342, 2015. doi: 10.1007/s11012-014-0094-8.

[22] D. Shahsavari, M. Shahsavari, L. Li, and B. Karami. A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation.

*Aerospace Science and Technology*, 72:134–149, 2018. doi: 0.1016/j.ast.2017.11.004.

[23] Z. Ibnorachid, L. Boutahar, K. EL Bikri, and R. Benamar. Buckling temperature and natural frequencies of thick porous functionally graded beams resting on elastic foundation in a thermal environment.

*Advances in Acoustics and Vibration*, 2019:7986569, 2019. doi: 10.1155/2019/7986569.

[24] Ş.D. Akbaş. Thermal effects on the vibration of functionally graded deep beams with porosity.

*International Journal of Applied Mechanics*, 9(5):1750076, 2017. doi: 10.1142/ S1758825117500764.

[25] H. Babaei, M.R. Eslami, and A.R. Khorshidvand. Thermal buckling and postbuckling responses of geometrically imperfect FG porous beams based on physical neutral plane.

*Journal of Thermal Stresses*, 43(1):109–131, 2020. doi: 10.1080/01495739.2019.1660600.

[26] F. Ebrahimi and A. Jafari. A higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities.

*Journal of Engineering*, 2016:9561504, 2016. doi: 10.1155/2016/9561504.

[27] Y. Liu, S. Su, H. Huang, and Y. Liang. Thermal-mechanical coupling buckling analysis of porous functionally graded sandwich beams based on physical neutral plane.

*Composites Part B: Engineering*, 168:236–242, 2019. doi: 10.1016/j.compositesb.2018.12.063.

[28] S.S. Mirjavadi, A. Matin, N. Shafiei, S. Rabby, and B. Mohasel Afshari. Thermal buckling behavior of two-dimensional imperfect functionally graded microscale-tapered porous beam.

*Journal of Thermal Stresses*, 40(10):1201–1214, 2017. doi: 0.1080/01495739.2017.1332962.

[29] E. Salari, S.A. Sadough Vanini, A.R. Ashoori, and A.H. Akbarzadeh. Nonlinear thermal behavior of shear deformable FG porous nanobeams with geometrical imperfection: Snap-through and postbuckling analysis.

*International Journal of Mechanical Sciences*, 178:105615, 2020. doi: 10.1016/j.ijmecsci.2020.105615.

[30] N. Ziane, S.A. Meftah, G. Ruta, and A. Tounsi. Thermal effects on the instabilities of porous FGM box beams.

*Engineering Structures*, 134:150–158, 2017. doi: 10.1016/j.engstruct. 2016.12.039.

[31] A.I. Aria, T. Rabczuk, and M.I. Friswell. A finite element model for the thermo-elastic analysis of functionally graded porous nanobeams.

*European Journal of Mechanics - A/Solids*, 77:103767, 2019. doi: 10.1016/j.euromechsol.2019.04.002.

[32] G.R. Liu and Y.T. Gu. A point interpolation method for two-dimensional solids.

*International Journal for Numerical Methods in Engineering*, 50(4):937–951, 2001. doi: 10.1002/1097-0207(20010210)50:4937::AID-NME62>3.0.CO;2-X.

[33] Y.T. Gu and G.R. Liu. A local point interpolation method for static and dynamic analysis of thin beams.

*Computer Methods in Applied Mechanics and Engineering*, 190(42):5515–5528, 2001. doi: 10.1016/S0045-7825(01)00180-3.

[34] T.H. Chinh, T.M. Tu, D.M. Duc, and T.Q. Hung. Static flexural analysis of sandwich beam with functionally graded face sheets and porous core via point interpolation meshfree method based on polynomial basic function.

*Archive of Applied Mechanics*, 91:933–947, 2021. doi: 10.1007/s00419-020-01797-x.

[35] J.N. Reddy and C.D. Chin. Thermomechanical analysis of functionally graded cylinders and plates.

*Journal of Thermal Stresses*, 21(6):593–626, 1998. doi: 10.1080/01495739808956165.

[36] H.-S. Shen.

*Functionally Graded Materials: Nonlinear Analysis of Plates and Shells*. CRC Press, 2016. doi: 10.1201/9781420092578.

[37] T.-K. Nguyen, T.P. Vo, B.-D. Nguyen, and J. Lee. An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory.

*Composite Structures*, 156:238–252, 2016. doi: 10.1016/j.compstruct.2015.11.074.

[38] M. Şimşek. Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories.

*Nuclear Engineering and Design*, 240(4):697–705, 2010. doi: 10.1016/j.nucengdes.2009.12.013.

[39] J.N. Reddy.

*Mechanics of Laminated Composite Plates and Shells: Theory and Analysis*. 2nd ed. CRC Press, 2003.

[40] G.R. Liu.

*Meshfree Methods: Moving Beyond the Finite Element Method*. 2nd ed. Taylor & Francis, 2009. doi: 10.1201/9781420082104.

[41] G.R. Liu, Y.T. Gu, and K.Y. Dai. Assessment and applications of point interpolation methods for computational mechanics.

*International Journal for Numerical Methods in Engineering*, 59(10):1373– 1397, 2004. doi: 10.1002/nme.925.

[42] T.P. Vo, H.-T. Thai, T.-K. Nguyen, F. Inam, and J. Lee. A quasi-3D theory for vibration and buckling of functionally graded sandwich beams.

*Composite Structures*, 119:1–12, 2015. doi: 10.1016/j.compstruct.2014.08.006.