Design and analysis of cementless hip-joint system using functionally graded material

Journal title

Archive of Mechanical Engineering




vol. 69


No 1


Asiri, Saeed : Mechanical Engineering Department, Engineering College King Abdulaziz University, Jeddah, Saudi Arabia



functionally graded material ; cementless hip-joint system ; natural frequency ; harmonic response ; fatigue analysis ; finite element analysis ; modal analysis

Divisions of PAS

Nauki Techniczne




Polish Academy of Sciences, Committee on Machine Building


[1] S. Gross and E.W. Abel. A finite element analysis of hollow stemmed hip prostheses as a means of reducing stress shielding of the femur. Journal of Biomechanics, 34(8):995–1003, 2001. doi: 10.1016/s0021-9290(01)00072-0.
[2] D. Lin, Q. Li, W. Li, S. Zhou, and M.V. Swain. Design optimization of functionally graded dental implant for bone remodeling. Composites Part B: Engineering, 40(7):668–675, 2009. doi: 10.1016/j.compositesb.2009.04.015.
[3] G. Jin, M. Takeuchi, S. Honda, T. Nishikawa, and H. Awaji. Properties of multilayered mullite/Mo functionally graded materials fabricated by powder metallurgy processing. Materials Chemistry and Physics, 89(2-3):238–243, 2005. doi: 10.1016/j.matchemphys.2004.03.031.
[4] E. Yılmaz, A. Gökçe, F. Findik, H.O. Gulsoy, and O. İyibilgin. Mechanical properties and electrochemical behavior of porous Ti-Nb biomaterials. Journal of the Mechanical Behavior of Biomedical Materials, 87:59–67, 2018. doi: 10.1016/j.jmbbm.2018.07.018.
[5] A.T. Şensoy. M. Çolak, I. Kaymaz, and F. Findik. Optimal material selection for total hip implant: a finite element case study. Arabian Journal for Science and Engineering, 44:10293--10301, 2019. doi: 10.1007/s13369-019-04088-y.
[6] T.A. Enab and N.E. Bondok. Material selection in the design of the tibia tray component of cemented artificial knee using finite element method. Materials and Design, 44:454–460, 2013. doi: 10.1016/j.matdes.2012.08.017.
[7] H. Weinans, R.Huiskes, and H.J. Grootenboer. The behavior of adaptive bone-remodeling simulation models. Journal of Biomechanics, 25(12):1425–1441, 1992. doi: 10.1016/0021-9290(92)90056-7.
[8] J.A. Simões and A.T. Marques. Design of a composite hip femoral prosthesis. Materials & Design, 26(5):391–401, 2005. doi: 10.1016/j.matdes.2004.07.024.
[9] S. Tyagi and S.K. Panigrahi. Transient analysis of ball bearing fault simulation using finite element method. Journal of The Institution of Engineers (India): Series C, 95:309–318, 2014. doi: 10.1007/s40032-014-0129-x.
[10] I.S. Jalham. Computer-aided quality function deployment method for material selection. International Journal of Computer Applications in Technology, 26((4):190–196, 2006. doi: 10.1504/IJCAT.2006.010764.
[11] E. Karana, P. Hekkert, and P. Kandachar. Material considerations in product design: A survey on crucial material aspects used by product designers. Materials & Design, 29(6):1081–1089, 2008. doi: 10.1016/j.matdes.2007.06.002.
[12] M.F. Ashby. Materials Selection in Mechanical Design. Butterworth-Heinemann, Oxford, 1995.
[13] C. Vezzoli and E. Manzini. Environmental complexity and designing activity. In: Design for Environmental Sustainability, pages 215–217. Springer, London, 2008. doi: 10.1007/978-1-84800-163-3_11.
[14] M. Kutz. Handbook of Materials Selection. John Wiley & Sons, New York, 2002.
[15] R.V. Rao and B.K. Patel. A subjective and objective integrated multiple attribute decision making method for material selection. Materials & Design, 31(10):4738–4747, 2010. doi: 10.1016/j.matdes.2010.05.014.
[16] X.F. Zha. A web-based advisory system for process and material selection in concurrent product design for a manufacturing environment. The International Journal of Advanced Manufacturing Technology, 25:233–243, 2005. doi: 10.1007/s00170-003-1838-0.
[17] F. Giudice, G. La Rosa, and A. Risitano. Materials selection in the Life-Cycle Design process: a method to integrate mechanical and environmental performances in optimal choice. Materials & Design, 26(1):9–20, 2005. doi: 10.1016/j.matdes.2004.04.006.
[18] F. Findik and K. Turan. Materials selection for lighter wagon design with a weighted property index method. Materials & Design, 37:470–477, 2012. doi: 10.1016/j.matdes.2012.01.016.
[19] M. İpek, İ.H. Selvi, F. Findik, O. Torkul, and I.H. Cedimoğlu. An expert system based material selection approach to manufacturing. Materials & Design, 47:331–340, 2013. doi: 10.1016/j.matdes.2012.11.060.
[20] J.A. Basurto-Hurtado, G.I. Perez-Soto, R.A. Osornio-Rios, A. Dominguez-Gonzalez, and L.A. Morales-Hernandez. A new approach to modeling the ductile cast iron microstructure for a finite element analysis. Arabian Journal for Science and Engineering, 44:1221–1231, 2019. doi: 10.1007/s13369-018-3465-y.
[21] E. Yılmaz, F. Kabataş, A. Gökçe, and F. Fındık. Production and characterization of a bone-like porous Ti/Ti-hydroxyapatite functionally graded material. Journal of Materials Engineering and Performance, 29:6455--6467, 2020. doi: 10.1007/s11665-020-05165-2.
[22] E. Yılmaz, A. Gökçe, F. Findik, and H.Ö. Gulsoy. Assessment of Ti–16Nb– xZr alloys produced via PIM for implant applications. Journal of Thermal Analysis and Calorimetry, 134:7–14, 2018. doi: 10.1007/s10973-017-6808-0.
[23] H.F. El-Sheikh, B.J. MacDonald, and M.S.J. Hashmi. Material selection in the design of the femoral component of cemented total hip replacement. Journal of Materials Processing Technology, 122(2-3):309–317, 2002. doi: 10.1016/S0924-0136(01)01128-1.
[24] T.S. Rubak, S.W. Svendsen, K. Søballe, and P. Frost. Total hip replacement due to primary osteoarthritis in relation to cumulative occupational exposures and lifestyle factors: a nationwide nested case–control study. Arthritis Care & Research, 66(10):1496–1505. doi: 10.1002/acr.22326.
[25] İ. Çelik and H. Eroğlu. Selection application of material to be used in hip prosthesis production with analytic hierarchy process. Materials Science & Engineering Technology, 48(11):1125–1132, 2017. doi: 10.1002/mawe.201700046.
[26] A. Aherwar, A. Patnaik, M. Bahraminasab, and A. Singh. Preliminary evaluations on development of new materials for hip joint femoral head. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(5):885–899, 2019. doi: 10.1177/1464420717714495.
[27] A. Hafezalkotob and A. Hafezalkotob. Comprehensive MULTIMOORA method with target-based attributes and integrated significant coefficients for materials selection in biomedical applications. Materials & Design, 87:949–959, 2015. doi: 10.1016/j.matdes.2015.08.087.
[28] G. Bergmann, G. Deuretzbacher, M. Heller, F. Graichen, A. Rohlmann, J. Strauss, anf G.N. Duda. Hip contact forces and gait patterns from routine activities. Journal of Biomechanics, 34(7):859–871, 2001. doi: 10.1016/s0021-9290(01)00040-9.
[29] A.Z. Şenalp, O. Kayabasi, and H. Kurtaran. Static, dynamic and fatigue behavior of newly designed stem shapes for hip prosthesis using finite element analysis. Materials and Design, 28(5):1577–1583, 2007. doi: 10.1016/j.matdes.2006.02.015.






DOI: 10.24425/ame.2021.139804