Study on the ankle rehabilitation device

Journal title

Archive of Mechanical Engineering




vol. 69


No 1


Duc Dao, Minh : Faculty Technology and Engineering, The Pham Van Dong University, Quang Ngai, Vietnam ; Tran, Xuan Tuy : Faculty Technology of Mechanical Engineering, The University of Danang – University of Science and Technology, Danang, Vietnam ; Pham, Dang Phuoc : Faculty Technology and Engineering, The Pham Van Dong University, Quang Ngai, Vietnam ; Ngo, Quoc Anh : Faculty Technology and Engineering, The Pham Van Dong University, Quang Ngai, Vietnam ; Le, Thi Thuy Tram : The Faculty Electronic-Electrical, The Quang Nam College, Quang Nam, Vietnam



ankle ; rehabilitation ; stroke ; slide mode controller ; linear actuator

Divisions of PAS

Nauki Techniczne




Polish Academy of Sciences, Committee on Machine Building


[1] E. Osayande, K.P. Ayodele, M.A. Komolafe. Development of a robotic hand orthosis for stroke patient rehabilitation. International Journal of Online and Biomedical Engineering, 16(13):142–149, 2020. doi: 10.3991/ijoe.v16i13.13407.
[2] Z. Yue, X. Zhang, and J. Wang. Hand Rehabilitation robotics on poststroke motor recovery. Behavioural Neurology, 2017:3908135, 2017. doi: 10.1155/2017/3908135.
[3] C. Grefkes and G.R. Fink. Recovery from stroke: current concepts and futures perspectives. Neurological Research and Practice, 2(1):17, 2020. doi: 10.1186/s42466-020-00060-6.
[4] R. Gassert and V. Dietz. Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective. Journal of NeuroEngineering and Rehabilitation, 15:46, 2018. doi: 10.1186/s12984-018-0383-x.
[5] S.H. Hayes and S.R. Carroll. Early intervention care in the acute stroke patient. Archives of Physical Medicine and Rehabilitation, 67(5):319–321, 1986.
[6] D.U. Jette, R.L. Warren, and C. Wirtalla. The relation between therapy intensity and outcomes of rehabilitation in skilled nursing facilities. Archives of Physical Medicine and Rehabilitation, 86(3):373–379, 2005. doi: 10.1016/j.apmr.2004.10.018.
[7] Z. Zhou and Q. Wang. Concept and prototype design of a robotic ankle-foot rehabilitation system with passive mechanism for coupling motion. 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), pages 1002–1005, Suzhou, China, 29 July -2 August, 2019. doi: 10.1109/cyber46603.2019.9066745.
[8] C.M. Racu and I. Doroftei. An overview on ankle rehabilitation devices. Advanced Materials Research, 1036:781–786, 2014. doi: 10.4028/
[9] A.A. Blank, J.A. French, A.U. Pehlivan, and M.K. O'Malley. Rehabilitation: Current trends in robot-assisted upper-limb stroke rehabilitation: promoting patient engagement in therapy. Current Physical Medicine and Rehabilitation Reports, 2(3):184–195, 2014.
[10] Z. Liao, L. Yao, Z. Lu, and J. Zhang. Screw theory based mathematical modeling and kinematic analysis of a novel ankle rehabilitation robot with a constrained 3-PSP mechanism topology. International Journal of Intelligent Robotics and Applications, 2(3):351–360, 2018. doi: 10.1007/s41315-018-0063-9.
[11] C.C.K. Lin, M.S. Ju, S.M. Chen, and B.W. Pan. A specialized robot for ankle rehabilitation and evaluation. Journal of Medical and Biological Engineering, 28(2):79–86, 2008.
[12] Z. Sun et al. Mechanism Design and ADAMS-MATLAB-Simulation of a Novel Ankle Rehabilitation Robot. 2019 IEEE International Conference on Robotics and Biomimetic (ROBIO), pages 425–432, Dali, China, December, 2019. doi: 10.1109/robio49542.2019.8961829.
[13] Q. Liu, A. Liu, W. Meng, Q. Ai, and S.Q. Xie. Hierarchical compliance control of a soft ankle rehabilitation robot actuated by pneumatic muscles. Frontiers in Neurorobotics, 11:64, 2017. doi: 10.3389/fnbot.2017.00064.
[14] T. Yonezawa, K. Nomura, T. Onodera, S. Ishimura, H. Mizoguchi, and H. Takemura. Evaluation of venous return in lower limb by passive ankle exercise performed by PHARAD. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 3582–3585, Milan, Italia, 25–29 August, 2015. doi: 10.1109/embc.2015.7319167.
[15] Ye Ding, M. Sivak, B. Weinberg, C. Mavroidis, and M.K. Holden. NUVABAT: Northeastern university virtual ankle and balance trainer. 2010 IEEE Haptics Symposium, pages 509–514, Waltham, Massachusetts, USA, 25–26 March, 2010. doi: 10.1109/haptic.2010.5444608.
[16] D. Ao, R. Song, and J. Gao. Movement performance of human–robot cooperation control based on emg-driven hill-type and proportional models for an ankle power-assist exoskeleton robot. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(8):1125–1134, 2017. doi: 10.1109/tnsre.2016.2583464.
[17] Y. Ren, Y.-N. Wu, C.-Y. Yang, T. Xu, R. L. Harvey, and L.-Q. Zhang. Developing a wearable ankle rehabilitation robotic device for in-bed acute stroke rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(6):589–596, 2017. doi: 10.1109/tnsre.2016.2584003.
[18] G. Aguirre-Ollinger, J.E. Colgate, M.A. Peshkin, and A. Goswami. Design of an active one-degree-of-freedom lower-limb exoskeleton with inertia compensation. The International Journal of Robotics Research, 30(4):486–499, 2011. doi: 10.1177/0278364910385730.
[19] Z. Zhou, Y. Sun, N. Wang, F. Gao, K. Wei, and Q. Wang. Robot-assisted rehabilitation of ankle plantar flexors spasticity: a 3-month study with proprioceptive neuromuscular facilitation. Frontiers in Neurorobotics, 10:16, 2016. doi: 10.3389/fnbot.2016.00016.
[20] I. Doroftei, C.M. Racu, C. Honceriu, and D. Irimia. One-degree-of freedom ankle rehabilitation platform. IOP Conference Series: Materials Science and Engineering, 591:012076, 2019. doi: 10.1088/1757-899x/591/1/012076.
[21] A. Gmerek and E. Jezierski. Admittance control of a 1-DoF robotic arm actuated by BLDC motor. 2012 17th International Conference on Methods & Models in Automation & Robotics (MMAR), pages 633–638, Miedzyzdroje, Poland, 27–30 August, 2012. doi: 10.1109/mmar.2012.6347811.
[22] Ł. Woliński. Comparison of the adaptive and neural network control for LWR 4+ manipulators: simulation study. Archive of Mechanical Engineering, 67(1):111–121, 2020. doi: 10.24425/ame.2020.131686.
[23] Meera C S, M.K. Gupta, and S. Mohan. Disturbance observer-assisted hybrid control for autonomous manipulation in a robotic backhoe. Archive of Mechanical Engineering, 66(2):153–169, 2019. doi: 10.24425/ame.2019.128442.
[24] O. Jedda, J. Ghabi and A. Douik. Sliding mode control of an inverted pendulum. In: Derbel N., Ghommam J., Zhu Q. (eds), Applications of Sliding Mode Control. Studies in Systems, Decision and Control, chapter 6:105–118, 2016, Springer. doi: 10.1007/978-981-10-2374-3_6.
[25] S. Singh, M.S. Qureshi, and P. Swarnkar. Comparison of conventional PID controller with sliding mode controller for a 2-link robotic manipulator. 2016 International Conference on Electrical Power And Energy System (ICEPES), pages 115–119, Bhopal, India, 14-16 December, 2016. doi: 10.1109/icepes.2016.7915916.
[26] P. Boscariol and D. Richiedei. Trajectory design for energy savings in redundant robotic cells. Robotics, 8(1):15, 2019. doi: 10.3390/robotics8010015.
[27] M. Adolphe, J. Clerval, Z. Kirchof, R. Lacombe-Delpech, and B. Zagrodny. Center of mass of human's body segments, Mechanics and Mechanical Engineering, 21(3):485–497, 2017.
[28] T. Eiammanussakul and V. Sangveraphunsiri. A lower limb rehabilitation robot in sitting position with a review of training activities. Journal of Healthcare Engineering, 2018:927807, 2018. doi: 10.1155/2018/1927807.
[29] A. Roy, H.I. Krebs, C.T. Bever, L.W. Forrester, R.F. Macko, and N. Hogan. Measurement of passive ankle stiffness in subjects with chronic hemiparesis using a novel ankle robot. Journal of Neurophysiology, 105(5):2132–2149, 2011. doi: 10.1152/jn.01014.2010.
[30] F. Gao, Y. Ren, E.J. Roth, R. Harvey, and L.-Q. Zhang. Effects of repeated ankle stretching on calf muscle–tendon and ankle biomechanical properties in stroke survivors. Clinical Biomechanics, 26(5):516–522, 2011. doi: 10.1016/j.clinbiomech.2010.12.003.
[31] G. Bucca, A. Bezzolato, S. Bruni and F. Molteni. A Mechatronic Device for the Rehabilitation of Ankle Motor Function. Journal of Biomechanical Engineering, 131(12):125001, 2009. doi: 10.1115/1.4000083.
[32] J. Zhong, Y. Zhu, C. Zhao, Z. Han, and X. Zhang. Position tracking of a pneumatic-muscle-driven rehabilitation robot by a single neuron tuned pid controller. Complexity, 2020:438391, 2020. doi: 10.1155/2020/1438391.






DOI: 10.24425/ame.2021.139803