Active Cancellation of the Tonal Component of Sound Using a Discrete Fourier Transform of Variable Length

Journal title

Archives of Acoustics




vol. 46


No 4


Łuczyński, Michał : Wroclaw University of Science and Technology, Chair of Acoustics and Multimedia, Wroclaw, Poland ; Dobrucki, Andrzej : Wroclaw University of Science and Technology, Chair of Acoustics and Multimedia, Wroclaw, Poland ; Brachmański, Stefan : Wroclaw University of Science and Technology, Chair of Acoustics and Multimedia, Wroclaw, Poland



active noise control ; tonal signal ; Discrete Fourier Transform

Divisions of PAS

Nauki Techniczne




Polish Academy of Sciences, Institute of Fundamental Technological Research, Committee on Acoustics


1. Dabrowski Z., Stankiewicz B. (2013), Methodology of selecting the reference source for an active noise control system in a car, International Journal of Occupational Safety and Ergonomics, 19(1): 117–125, doi: 10.1080/10803548.2013.11076971.
2. Dabrowski Z., Dziurdz J., Górnicka D. (2017), Utilisation of the coherence analysis in acoustic diagnostics of internal combustion engines, Archives of Acoustics, 42(3): 475–481, doi: 10.1515/aoa-2017-0050.
3. Górski P., Morzynski L. (2013), Active noise reduction algorithm based on NOTCH filter and genetic algorithm, Archives of Acoustics, 38(2): 185–190, doi: 10.2478/aoa-2013-0021.
4. ISO 1996-2:2017 (2017), Acoustics – Description, measurement and assessment of environmental noise – Part 2: Determination of sound pressure levels, International Organization for Standardization, Geneva, Switzerland.
5. Kuo S.M., Tahernezhadi M., Ji L. (1997), Frequency- domain periodic active noise control and equalization, IEEE Transactions on Speech and Audio Processing, 5(4): 348–358, doi: 10.1109/89.593309.
6. Kim S., Park Y. (1999), Active control of multi-tonal noise with reference generator based on on-line frequency estimation, Journal of Sound and Vibration, 227(3): 647–666, doi: 10.1006/jsvi.1999.2383.
7. Łuczynski M. (2017), Analysis of the influence of amplitude, frequency and phase errors on effectiveness of noise reduction of multitone signals by active noise cancelling systems, [in:] Postepy akustyki =Advances in Acoustics 2017, Bismor D. [Ed.], pp. 61– 67, Gliwice: Polskie Towarzystwo Akustyczne, Oddział Górnoslaski, doi: 10.1515/aoa-2017-0059.
8. Łuczynski M. (2018), Normal to whisper speech conversion using active tone cancellation – case study, [in:] Postepy akustyki =Advances in acoustics 2018, Marszal J. [Ed.], pp. 62–66, Gdansk: Polskie Towarzystwo Akustyczne, Oddział Gdanski.
9. Łuczynski M. (2019a), Classes of tonality of signals in the aspect of active elimination of tonal components, Vibrations in Physical Systems, 30(1): Article ID 2019126.
10. Łuczynski M. (2019b), Primary study on removing mains hum from recordings by active tone cancellation algorithms, [in:] 146th Convention Audio Engineering Society, March 20–23, 2019 Dublin, Ireland, Convention paper No. 10147, browse.cfm?elib=20280.
11. Łuczynski M., Brachmanski S. (2017), Mathematical Model of the Acoustic Signal Generated by the Combustion Engine, [in:] 142nd Convention Audio Engineering Society, May 20–23, 2017, Berlin, Germany, Convention paper No. 9717, browse.cfm?elib=18595.
12. Pawełczyk M. (2008), Active noise control – a review of control-related problems (plenary paper), [in:] 55th Open Seminar on Acoustics, Wrocław–Piechowice 8– 12.09.2008, pp. 65–74.
13. Qiu X., Hansen C.H. (2000), An algorithm for active control of transformer noise with online cancellation path modelling based on perturbation method, Journal of Sound and Vibration, 240(4): 647–665, doi: 10.1006/jsvi.2000.3256.
14. Qiu X., Li X., Ai Y., Hansen C.H. (2002), A waveform synthesis algorithm for active control of transformer noise: implementation, Applied Acoustics, 63(5): 467– 479, doi: 10.1016/S0003-682X(01)00060-3.
15. Rocha R.D. (2014), A Frequency-Domain Method for Active Acoustic Cancellation of Known Audio Sources, A Master Thesis, Faculty of California Polytechnic State University, San Louis Obispo, June 2014, article=2331&context=theses.
16. Rout N.K., Das D.P., Panda G. (2019), PSO based adaptive narrowband ANC algorithm without the use of synchronization signal and secondary path estimate, Mechanical Systems and Signal Processing, 114: 378– 398, doi: 10.1016/j.ymssp.2018.05.018.
17. Ueda T., Fujii K., Hirobayashi S., Yoshizawa T., Misawa T. (2013), Motion analysis using 3D highresolution frequency analysis, IEEE Transactions on Image Processing, 22(8): 2946–2959, doi: 10.1109/TIP.2012.2228490.
18. Wang J., Huang L., Cheng L. (2005), A study of active tonal noise control for a small axial flow fan, The Journal of the Acoustical Society of America, 117(2): 734–743, doi: 10.1121/1.1848072.
19. Xiao Y., Ma L., Hasegawa K. (2009), Properties of FXLMS-based narrowband active noise control with online secondary-path modeling, IEEE Transactions on Signal Processing, 57(8): 2931–2949, doi: 10.1109/TSP.2009.2020766.
20. Yoshizawa T., Hirobayashi S., Misawa T. (2011), Noise reduction for periodic signals using high resolution frequency analysis, Journal on Audio, Speech, and Music Processing, 2011: 5, doi: 10.1186/1687-4722-2011-426794.
21. Zhang L., Tao J., Qiu X. (2012), Active control of transformer noise with an internally synthesized reference signal, Journal of Sound and Vibration, 331(15): 3466–3475, doi: 10.1016/j.jsv.2012.03.032.
22. Zivanovic M., Roebel A., Rodet X. (2004), A new approach to spectral peak classification, [In:] Proceedings of the 12th European Signal Processing Conference (EUSIPCO), pp. 1277–1280,






DOI: 10.24425/aoa.2021.138151