Revisiting the Open-End Reflection Coefficient and Turbulent Losses in an Organ Pipe with Low Mach Number Flowipe with low Mach number flow

Journal title

Archives of Acoustics




vol. 46


No 2


Hruška, Viktor : Academy of Performing Arts in Prague, Musical Acoustics Research Centre, Prague, Czech Republic ; Dlask, Pavel : Academy of Performing Arts in Prague, Musical Acoustics Research Centre, Prague, Czech Republic



organ pipe ; reflection coefficient ; end correction ; flow-acoustic interactions

Divisions of PAS

Nauki Techniczne




Committee on Acoustics PAS, PAS Institute of Fundamental Technological Research, Polish Acoustical Society


1. Ando Y. (1969), On the sound radiation from semiinfinite circular pipe of certain wall thickness, Acta Acustica united with Acustica, 22(4): 219–225.
2. Blackstock D.T. (2000), Fundamentals of Physical Acoustics, Wiley & Sons, New York.
3. Cargill A. (1982), Low frequency acoustic radiation from a jet pipe – a second order theory, Journal of Sound and Vibration, 83(3): 339–354, doi: 10.1016/S0022-460X(82)80097-7.
4. da Silva A.R., Greco G.F. (2019), Computational investigation of plane wave reflections at the open end of subsonic intakes, Journal of Sound and Vibration, 446: 412–428, doi: 10.1016/j.jsv.2019.01.044.
5. da Silva A.R., Scavone G.P., Lenzi A. (2010), Numerical investigation of the mean flow effect on the acoustic reflection at the open end of clarinet-like instruments, Acta Acustica united with Acustica, 96(5): 959–966.
6. Fabre B. (2016), Flute-like instruments, [in:] Chaigne A., Kergomard J., Acoustics of Musical Instruments. Modern Acoustics and Signal Processing, pp. 559–606, Springer: New York, NY, doi: 10.1007/978-1- 4939-3679-3_10.
7. Fletcher N., Rossing T. (1998), The Physics of Musical Instruments, Springer: New York.
8. Hamilton M.F., Blackstock D.T. [Eds] (2008), Nonlinear Acoustics, Acoustical Society of America: Melville, NY.
9. Hirschberg A., Hoeijmakers M. (2014), Comments on the low frequency radiation impedance of a duct exhausting a hot gas, The Journal of the Acoustical Society of America, 136(2): EL84–EL89, doi: 10.1121/1.4885540.
10. Hruška V., Dlask P. (2017), Connections between organ pipe noise and shannon entropy of the airflow: Preliminary results, Acta Acustica united with Acustica, 103(6): 1100–1105, doi: 10.3813/AAA.919137.
11. Hruška V., Dlask P. (2019), Investigation of the sound source regions in open and closed organ pipes, Archives of Acoustics, 44(3): 467–474, doi: 10.24425/ aoa.2019.129262.
12. Hruška V., Dlask P., Guštar M. (2019), Nondestructive measurement of the pressure waveform and the reflection coefficient in a flue organ pipe, [in:] Proceedings of the International Symposium on Music Acoustics 2019 – ISMA 2019.
13. Jang S.-H., Ih J.-G. (1998), On the multiple microphone method for measuring in-duct acoustic properties in the presence of mean flow, The Journal of the Acoustical Society of America, 103(3): 1520–1526, doi: 10.1121/1.421289.
14. Lautrup B. (2011), Physics of Continuous Matter, Taylor & Francis Inc.
15. Levine H., Schwinger J. (1948), On the radiation of sound from an unflanged circular pipe, Physical Review, 73(4): 383–406, doi: 10.1103/PhysRev.73.383.
16. Mickiewicz W. (2015), Particle image velocimetry and proper orthogonal decomposition applied to aerodynamic sound source region visualization in organ flue pipe, Archives of Acoustics, 40(4): 475–484, doi: 10.1515/aoa-2015-0047.
17. Munt R. (1990), Acoustic transmission properties of a jet pipe with subsonic jet flow: I. The cold jet reflection coefficient, Journal of Sound and Vibration, 142(3): 413–436, doi: 10.1016/0022-460X(90)90659-N.
18. Nomura Y., Yamamura I., Inawashiro S. (1960), On the acoustic radiation from a flanged circular pipe, Journal of the Physical Society of Japan, 15(3): 510– 517, doi: 10.1143/JPSJ.15.510.
19. Peters M.C.A.M., Hirschberg A., Reijnen A.J., Wijnands A.P.J. (1993), Damping and reflection coefficient measurements for an open pipe at low mach and low helmholtz numbers, Journal of Fluid Mechanics, 256: 499–534, doi: 10.1017/S0022112093002861.
20. Raffel M., Willert C.E., Wereley S.T., Kompenhans J. (2007), Particle Image Velocimetry. Springer: Berlin Heidelberg.
21. Rienstra S. (1983), A small strouhal number analysis for acoustic wave-jet flow-pipe interaction, Journal of Sound and Vibration, 86(4): 539–556, doi: 10.1016/0022-460X(83)91019-2.
22. Ronneberger D. (1975), Precise measurement of the sound attenuation and the phase velocity in pipes with a flow with regard to the interaction between sound and turbulence [in German: Genaue Messung der Schalldämpfung und der Phasengeschwindigkeit in durchströmten Rohren im Hinblick auf die Wechselwirkung zwischen Schall und Turbulenz], Universität Göttingen.
23. Schlichting H., Gersten, K. (2016), Boundary- Layer Theory. Springer-Verlag GmbH.
24. Weng C., Boij S., Hanifi A. (2013), The attenuation of sound by turbulence in internal flows, The Journal of the Acoustical Society of America, 133(6): 3764–3776, doi: 10.1121/1.4802894.
25. Yoshikawa S., Tashiro H., Sakamoto Y. (2012), Experimental examination of vortex-sound generation in an organ pipe: a proposal of jet vortex-layer formation model, Journal of Sound and Vibration, 331(11): 2558–2577, doi: 10.1016/j.jsv.2012.01.026.






DOI: 10.24425/aoa.2021.136575


Archives of Acoustics; 2021; vol. 46; No 2; 197-204