The role of oxidative stress in the cooperation of parthenolide and etoposide in HL-60 cells

Journal title

Folia Medica Cracoviensia




Vol. 60


No 4


Papież, Monika A. : Department of Cytobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland ; Siodłak, Oliwia : Department of Cytobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland ; Krzyściak, Wirginia : Department of Medical Diagnostic, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland



parthenolide ; etoposide ; acute myeloid leukemia ; GSH ; oxidative stress ; flow cytometry

Divisions of PAS

Nauki Medyczne




1. Bell J.A., Galaznik A., Huelin R., Stokes M., Guo Y., Fram R.J., Faller D.V.: Effectiveness and safety of therapeutic regimens for elderly patients with acute myeloid leukemia: a systematic literature review. Clin Lymphoma Myeloma Leuk. 2018; 18: e303–e314.
2. Hackl H., Astanina K., Wieser R.: Molecular and genetic alterations associated with therapy resistance and relapse of acute myeloid leukemia. J Hematol Oncol. 2017; 20: 51.
3. Foran J.M.: Do cytogenetics affect the post-remission strategy for older patients with AML in CR1? Best Pract Res Clin Haematol. 2017; 30: 306–311.
4. Yunos N.M., Beale P., Yu J.Q., Huq F.: Synergism from the combination of oxaliplatin with selected phytochemicals in human ovarian cancer cel lines. Anticancer Res. 2011; 31: 4283–4290.
5. Shah K., Mirza S., Desai U., Jain N., Rawal R.: Synergism of curcumin and cytarabine in the down regulation of multi-drug resistance genes in acute myeloid leukemia. Anticancer Agents Med Chem. 2016; 16: 128–135.
6. Banudevi S., Swaminathan S., Maheswari K.U.: Pleiotropic role of dietary phytochemicals in cancer: emerging perspectives for combinational therapy. Nutr Cancer. 2015; 67: 1021–1048.
7. Pei S., Minhajuddin M., D’Alessandro A., Nemkov T., Stevens B.M., Adane B., Khan N., Hagen F.K., Yadav V.K., De S., Ashton J.M., Hansen K.C., Gutman J.A., Pollyea D.A., Crooks P.A., Smith C., Jordan C.T.: Rational design of a parthenolide-based drug regimen that selectively eradicates acute myelogenous leukemia stem cells. J Biol Chem. 2016; 291: 21984–22000.
8. Guzman M.L., Rossi R.M., Karnischky L., Li X., Peterson D.R., Howard D.S., Jordan C.T.: The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood. 2005; 105: 4163–4169.
9. Papiez M.A., Baran J., Bukowska-Straková K., Wiczkowski W.: Antileukemic action of (-)-epicatechin in the spleen of rats with acute myeloid leukemia. Food Chem Toxicol. 2010; 48: 3391–3397.
10. Papież M.A.: The influence of curcumin and (-)-epicatechin on the genotoxicity and myelosuppression induced by etoposide in bone marrow cells of male rats. Drug Chem Toxicol. 2013; 36: 93–101.
11. Siveen K.S., Uddin S., Mohammad R.M.: Targeting acute myeloid leukemia stem cel signaling by natural products. Mol Cancer. 2017; 16: 1–12.
12. Curry E.A., Murry D.J., Yoder C., Fife K., Armstrong V., Nakshatri H., O’Connell M., Sweeney C.J.: Phase I dose escalation trial of feverfew with standardized doses of parthenolide in patients with cancer. Invest New Drugs. 2004; 22: 299–305.
13. Knight D.W.: Feverfew: chemistry and biological activity. Nat Prod Rep. 1995; 12: 271–276.
14. Ordóñez P.E., Sharma K.K., Bystrom L.M., Alas M.A., Enriquez R.G., Malagón O., Jones D.E., Guzman M.L., Compadre C.M.: Dehydroleucodine, a Sesquiterpene Lactone from Gynoxys verrucosa, Demonstrates Cytotoxic Activity against Human Leukemia Cells. J Nat Prod. 2016; 79: 691–696.
15. Merfort I.: Perspectives on sesquiterpene lactones in inflammation and cancer. Curr Drug Targets. 2011; 12: 1560–1573.
16. Li C., Jones A.X., Lei X.: Natural product reports synthesis and mode of action of oligomeric sesquiterpene lactones. Nat Prod Rep. 2015; 1–10.
17. Pei S., Minhajuddin M., Callahan K.P., Balys M., Ashton J.M., Neering S.J., Lagadinou E.D., Corbett C., Ye H., Liesveld J.L., O’Dwyer K.M., Li Z., Shi L., Greninger P., Settleman J., Benes C., Hagen F.K., Munger J., Crooks P.A., Becker M.W., Jordan C.T.: Targeting aberrant glutathione metabolism to eradicate human acute myelogenous leukemia cells. J Biol Chem. 2013; 288: 33542–33558.
18. Klein K., Kaspers G., Harrison C.J., Beverloo H.B., Reedijk A., Bongers M., Cloos J., Pession A., Reinhardt D., Zimmerman M., Creutzig U., Dworzak M., Alonzo T., Johnston D., Hirsch B., Zapotocky M., De Moerloose B., Fynn A., Lee V., Taga T., Tawa A., Auvrignon A., Zeller B., Forestier E., Salgado C., Balwierz W., Popa A., Rubnitz J., Raimondi S., Gibson B.: Clinical impact of additional cytogenetic aberrations, ckit and ras mutations, and treatment elements in pediatric t(8;21)-aml: results from an international retrospective study by the international Berlin–Frankfurt–Münster study group. J Clin Oncol. 2015; 20: 4247–4258.
19. Burnett A.K.: New induction and postinduction strategies in acute myeloid leukemia. Curr Opin Hematol. 2012; 19: 76–81.
20. Kagan V.E., Yalowich J.C., Borisenko G.G., Tyurina Y.Y., Tyurin V.A., Thampatty P., Fabisiak J.P.: Mechanism-based chemopreventive strategies against etoposide-induced acute myeloid leukemia: free radical/antioxidant approach. Mol Pharmacol. 1999; 56: 494–506.
21. Patel N.M., Nozaki S., Shortle N.H., Bhat-Nakshatri P., Newton T.R., Rice S., Gelfanov V., Boswell S.H., Goulet R.J., Sledge G.W., Nakshatri H.: Paclitaxel sensitivity of breast cancer cells with constitutively active NF-kappaB is enhanced by Ikappa-B alpha super-repressor and parthenolide. Oncogene. 2000; 19: 4159–4169.
22. deGraffenried L.A., Chandrasekar B., Friedrichs W.E., Donzis E., Silva J., Hidalgo M., Freeman J.W., Weiss G.R.: NF-kappa B inhibition markedly enhances sensitivity of resistant breast cancer tumor cells to tamoxifen. Ann Oncol. 2004; 15: 885–890.
23. Tietze F.: Enzymatic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Ann Biochem. 1969; 27: 502–522.
24. Papież M.A., Krzyściak W., Szade K., Bukowska-Straková K., Kozakowska M., Hajduk K., Bystrowska B., Dulak J., Jozkowicz A.: Curcumin enhances the cytogenotoxic effect of etoposide in leukemia cells through induction of reactive oxygen species. Drug Des Devel Ther. 2016; 10: 557–570.
25. Wurthwein G., Krumpelmann S., Tillmann B., Real E., Schulze-Westhoff P., Jurgens H., Boos J.: Population pharmacokinetic approach to compare oral and i.v. administration of etoposide. Anticancer Drugs. 1999; 10: 807–814.
26. Kim Y.R., Eom J.I., Kim S.J., Jeung H.K., Cheong J.W., Kim J.S., Min Y.H.: Myeloperoxidase expression as a potential determinant of parthenolide-induced apoptosis in leukemia bulk and leukemia stem cells. JPET. 2010; 335: 389–400.
27. Vlasova I.I., Feng W., Goff J.P., Giorgianni A., Do D., Gollin S.M., Lewis D.W., Kagan V.E., Yalowich J.C.: Myeloperoxidase-dependent oxidation of etoposide in human myeloid progenitor CD34+ cells. Mol Pharmacol. 2011; 79: 448–479.
28. Seo K.H., Ko H.M., Han A., Kim H.A., Choi J.H., Park S.J., Kim K.J., Lee H.K., Im S.Y.: Platelet-activating factor induces up-regulation of antiapoptotic factors in a melanoma cell line through nuclear factor-kb activation. Cancer Res. 2006; 66: 4681–4686.
29. Teufelhofer O., Weiss R.M., Parzefall W., Schulte-Hermann R., Micksche M., Berger W., Elbling L.: Promyelocytic HL60 cells express NADPH oxidase and are exellent targets in a rapid spectrophotometric microplate assay for extracellular superoxide. Toxicol Sci. 2003; 76: 376–383.
30. Skalska J., Brookes P.S., Nadtochiy S.M., Hilchey S.P., Jordan C.T., Guzman M.L., Maggirwar S.B., Briehl M.M., Bernstein S.H.: Modulation of cell surface protein free thiols: a potential novel mechanism of action of the sesquiterpene lactone parthenolide. PLoS One. 2009; 2: e8115.






DOI: 10.24425/fmc.2020.136200


Folia Medica Cracoviensia; 2020; Vol. 60; No 4; 5-17