Details

Title

Growth stability analysis of embedded delaminations with the use of FE node relocation procedure and effective resistance curve concept

Journal title

Archive of Mechanical Engineering

Yearbook

2020

Volume

vol. 67

Issue

No 4

Affiliation

Czarnocki, Piotr : Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Poland. ; Zagrajek, Tomasz : Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Poland.

Authors

Keywords

delamination growth stability ; growth modelling ; node relocation procedure ; effective resistance curve

Divisions of PAS

Nauki Techniczne

Coverage

415-433

Publisher

Polish Academy of Sciences, Committee on Machine Building

Bibliography


[1] C. Kassapoglou and J. Hammer. Design and analysis of composite structures with manufacturing flaws. Journal of American Helicopter Society, 35(4):46–52, 1990. doi: 10.4050/JAHS.35.46.
[2] R.C. Yu and A. Pandolfi. Modelling of delamination fracture in composites: a review. In: S. Sridharan (ed.), Delamination Behaviour of Composites, pages 429–451. Woodhead Publishing Ltd., Cambridge, 2008.
[3] H. Chai, C.D. Babcock, and W.G. Knausss. One dimensional modelling of failure in laminated plates by delamination buckling. International Journal of Solids and Structures, 17(11):1069–1083. 1981.
[4] J.D. Whitcomb. Finite element analysis of instability related delamination growth. Journal of Composite Materials, 15(5):403–426, 1981. doi: 10.1177/002199838101500502.
[5] V.V. Bolotin. Defects of the delamination type in composite structures. Mechanics of Composite Materials, 20(2):173–188, 1984. doi: 10.1007/BF00610358.
[6] L.M. Kachanov. Delamination Buckling of Composite Materials, pages 57–67, Kuwer Academic Press, 1988.
[7] G.R. Irwin. Fracture, Handbook der Physik (Fracture, Handbook of Physics), pages 551–590. Springer, Berlin, 1958. (in German).
[8] E.F. Rybicki and M.F. Kanninen. A finite element calculation of stress intensity factors by a modified crack closure integral. Engineering Fracture Mechanics, 9(4):931–938, 1977. doi: 10.1016/0013-7944(77)90013-3.
[9] C. Bisagni, R. Vesccovini, and C.G. Davila. Assessment of the damage tolerance of post-buckled hat-stiffened panels using single-stringer specimens. In: 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, paper no. AIAA2010-2696, Orlando, USA, 12–15 April, 2010. doi: 10.2514/6.2010-2696.
[10] J.D. Whitcomb. Three-dimensional analysis of a postbuckled embedded delamination. Journal of Composite Materials, 23(9):862–889, 1989. doi: 10.1177/002199838902300901.
[11] J.D. Whitcomb. Analysis of a laminate with a postbuckled embedded delamination, including contact effect. Journal of Composite Materials, 26(10):1523–1535, 1992. doi: 10.1177/002199839202601008.
[12] H. Okada, M. Higashi, M. Kikuchi, Y. Fukui, and N. Kumazawa. Three dimensional virtual crack closure-integral method (VCCM) with skewed and non-symmetric mesh arrangement at the crack front. Engineering Fracture Mechanics, 72(11):1717–1737, 2005. doi: 10.1016/j.engfracmech.2004.12.005.
[13] D. Xie and S.B. Biggers Jr. Progressive crack growth analysis using interface element based on the virtual crack closure technique. Finite Elements in Analysis and Design, 42(11):977–984, 2006. doi: 10.1016/j.finel.2006.03.007.
[14] D. Xie and S.B. Biggers Jr. Strain energy release rate calculation for a moving delamination front of arbitrary shape based on the virtual crack closure technique. Part I: Formulation and validation. Finite Elements in Analysis and Design, 73(6):771–785, 2006. doi: 10.1016/j.engfracmech.2005.07.013.
[15] D. Xie and S.B. Biggers Jr. Strain energy release rate calculation for a moving delamination front of arbitrary shape based on the virtual crack closure technique. Part II: Sensitivity study on modeling details. Finite Elements in Analysis and Design, 73(6):786–801, 2006. doi: 10.1016/j.engfracmech.2005.07.014.
[16] A.C. Orifici, R.S. Thomson, R. Egenhardt, C. Bisagni, and J. Bayandor. Development of a finite element analysis methodology for the propagation of delaminations in composite structures. Mechanics of Composite Materials, 43(1):9–28, 2007. doi: 10.1007/s11029-007-0002-6.
[17] A. Riccio, A. Raimondo, and F. Scaramuzzino. A robust numerical approach for the simulation of skin–stringer debonding growth in stiffened composite panels under compression. Composites Part B: Engineering, 71:131–142, 2015. doi: 10.1016/j.compositesb.2014.11.007.
[18] D. Zou and C. Bisagni. Study of skin-stiffer separation in T-stiffened composite specimens in post-buckling condition. Journal of Aerospace Engineering, 31(4), 2018. doi: 10.1061/(ASCE)AS.1943-5525.0000849.
[19] A.C. Orifici, R.S. Thomson, R. Degenhardt, C. Bisagni, and J. Bayandor. A finite element methodology for analysing degradation and collapse in postbuckling composite aerospace structures. Journal of Composite Materials, 43(26):3239–3263, 2009. doi: 10.1177/0021998309345294.
[20] C.G. Dávila and C. Bisagni. Fatigue life and damage tolerance of postbuckled composite stiffened structures with initial delamination. Composite Structures, 161:73–84, 2017. doi: 10.1016/j.compstruct.2016.11.033.
[21] E. Pietropaoli and A. Riccio. On the robustness of finite element procedures based on Virtual Crack Closure Technique and fail release approach for delamination growth phenomena. Definition and assessment of a novel methodology. Composites Science and Technology, 70(8):1288–1300, 2010. doi: 10.1016/j.compscitech.2010.04.006.
[22] E. Pietropaoli and A. Riccio. Formulation and assessment of an enhanced finite element procedure for the analysis of delamination growth phenomena in composite structures. Composites Science and Technology, 71(6):836–846, 2011. doi: 10.1016/j.compscitech.2011.01.026.
[23] Y.P. Liu, G.Q. Li, and C.Y. Chen. Crack growth simulation for arbitrarily shaped cracks based on the virtual crack closure technique. International Journal of Fracture, 185:1–15, 2014. doi: 10.1007/s10704-012-9790-3.
[24] Y.P. Liu, C.Y. Chen, and G.Q. Li. A modified zigzag approach to approximate moving crack front with arbitrary shape. Engineering Fracture Mechanics, 78(2):234–251, 2011. doi: 10.1016/j.engfracmech.2010.08.007.
[25] A. Riccio, M. Damiano, A. Raimondo, G. di Felice, and A. Sellitto. A~fast numerical procedure for the simulation of inter-laminar damage growth in stiffened composite panels. Composite Structures, 145:203–216, 2016. doi: 10.1016/j.compstruct.2016.02.081.
[26] K.F. Nilsson, L.E. Asp, J.E. Alpman, and L. Nysttedt. Delamination buckling and growth for delaminations at different depths in a slender composite panel. International Journal of Solids and Structures, 38(17):3039–3071, 2001. doi: 10.1016/S0020-7683(00)00189-X.
[27] R.A. Jurf and R.B. Pipes. Interlaminar fracture of composite materials. Journal of Composite Materials, 16(5):386–394, 1982. doi: 10.1177/002199838201600503.
[28] R.L. Ramkumar and J.D. Whitcomb. Characterisation of mode I and mixed-mode delamination growth in T300/5208 graphite/epoxy. In: W. Johnson (ed.), Delamination and Debonding of Materials, pages 315–335, ASTM, Philadelphia, 1985. doi: 10.1520/STP36312S.
[29] S. Hashemi, A.J. Kinloch, and J.G. Williams. The effects of geometry, rate and temperature on mode I, mode II and mixed-mode I/II interlaminar fracture of carbon-fibre/poly(ether-ether-ketone) composites. Journal of Composite Materials, 24(9):918–956, 1990. doi: 10.1177/002199839002400902.
[30] S. Hashemi, A.J. Kinloch, and J.G. Williams. Mixed-mode fracture in fiber-polymer composite laminates. In: T. O'Brien (ed.) Composite Materials: Fatigue and Fracture, vol. 3, pages 143–168, ASTM ASTM, Philadelphia, 1991. doi: 10.1520/STP17717S.
[31] C. Hwu, C.J. Kao, and L.E. Chang. Delamination fracture criteria for composite laminates. Journal of Composite Materials, 29(15):1962–1987, 1995. doi: 10.1177/002199839502901502.
[32] M.L. Benzeggagh and M. Kenane. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Composites Science and Technology, 56:439–449, 1996.
[33] N.B. Adeyemi, K.N. Shivakumar, and V.S. Avva. Delamination fracture toughness of woven-fabric composites under mixed-mode loading. AIAA Journal, 37(4):517–520, 1999. doi: 10.2514/2.747.
[34] J.R. Reeder. 3D mixed-mode delamination fracture criteria – an experimentalist's perspective. In: American Society for Composites 21st Annual Technical Conference, document ID: 20060048260, Dearborn, USA, 2006.
[35] R. Kruger. Virtual crack closure technique: History, approach, and applications. Applied Mechanics Reviews, 57(2):109–143, 2004. doi: 10.1115/1.1595677.
[36] E.J. Barbero. Finite Element Analysis of Composite Materials, CRC Press, Boca Raton, 2014.
[37] J.W. Hutchinson, M.E. Mear, and J.R. Rice. Crack paralleling an interface between dissimilar materials. Journal of Applied Mechanics, 54(4):828–832, 1987. doi: 10.1115/1.3173124.
[38] M.A. Tashkinov. Modelling of fracture processes in laminate composite plates with embedded delamination. Frattura ed Integrita Strutturale, 11(39):248–262, 2017.
[39] A.B. Pereira and A.B. de Morais. Mode II interlaminar fracture of glass/epoxy multidirectional laminates. Composites Part A: Applied Science and Manufacturing, 35(2):265–272, 2004. doi: 10.1016/j.compositesa.2003.09.028.
[40] A.B. Pereira and A.B. de Morais. Mode I interlaminar fracture of carbon/epoxy multidirectional laminates. Composites Science and Technology, 64(13-14):2261–2270, 2004. doi: 10.1016/j.compscitech.2004.03.001.

Date

2020.12.07

Type

Artykuły / Articles

Identifier

DOI: 10.24425/ame.2020.131702 ; ISSN 0004-0738, e-ISSN 2300-1895

Source

Archive of Mechanical Engineering; 2020; vol. 67; No 4; 415-433

Reviewers


The Editorial Board of the Archive of Mechanical Engineering (AME) sincerely expresses gratitude to the following individuals who devoted their time to review papers submitted to the journal. Particularly, we express our gratitude to those who reviewed papers several times.

List of reviewers of volume 68 (2021)
Ahmad ABDALLA – Huaiyin Institute of Technology, China
Sara ABDELSALAM – University of California, Riverside, United States
Muhammad Ilman Hakimi Chua ABDULLAH – Universiti Teknikal Malaysia Melaka, Malaysia
Hafiz Malik Naqash AFZAL – University of New South Wales, Sydney, Australia
Reza ANSARI – University of Guilan, Rasht, Iran
Jeewan C. ATWAL – Indian Institute of Technology Delhi, New Delhi, India
Hadi BABAEI – Islamic Azad University, Tehran, Iran
Sakthi BALAN – K. Ramakrishnan college of Engineering, Trichy, India
Leszek BARANOWSKI – Military University of Technology, Warsaw, Poland
Elias BRASSITOS – Lebanese American University, Byblos, Lebanon
Tadeusz BURCZYŃSKI – Institute of Fundamental Technological Research, Warsaw, Poland
Nguyen Duy CHINH – Hung Yen University of Technology and Education, Hung Yen, Vietnam
Dorota CHWIEDUK – Warsaw University of Technology, Poland
Adam CISZKIEWICZ – Cracow University of Technology, Poland
Meera CS – University of Petroleum and Energy Studies, Duhradun, India
Piotr CYKLIS – Cracow University of Technology, Poland
Abanti DATTA – Indian Institute of Engineering Science and Technology, Shibpur, India
Piotr DEUSZKIEWICZ – Warsaw University of Technology, Poland
Dinesh DHANDE – AISSMS College of Engineering, Pune, India
Sufen DONG – Dalian University of Technology, China
N. Godwin Raja EBENEZER – Loyola-ICAM College of Engineering and Technology, Chennai, India
Halina EGNER – Cracow University of Technology, Poland
Fehim FINDIK – Sakarya University of Applied Sciences, Turkey
Artur GANCZARSKI – Cracow University of Technology, Poland
Peng GAO – Northeastern University, Shenyang, China
Rafał GOŁĘBSKI – Czestochowa University of Technology, Poland
Andrzej GRZEBIELEC – Warsaw University of Technology, Poland
Ngoc San HA – Curtin University, Perth, Australia
Mehmet HASKUL – University of Sirnak, Turkey
Michal HATALA – Technical University of Košice, Slovak Republic
Dewey HODGES – Georgia Institute of Technology, Atlanta, United States
Hamed HONARI – Johns Hopkins University, Baltimore, United States
Olga IWASINSKA – Warsaw University of Technology, Poland
Emmanuelle JACQUET – University of Franche-Comté, Besançon, France
Maciej JAWORSKI – Warsaw University of Technology, Poland
Xiaoling JIN – Zhejiang University, Hangzhou, China
Halil Burak KAYBAL – Amasya University, Turkey
Vladis KOSSE – Queensland University of Technology, Brisbane, Australia
Krzysztof KUBRYŃSKI – Air Force Institute of Technology, Warsaw, Poland
Waldemar KUCZYŃSKI – Koszalin University of Technology, Poland
Igor KURYTNIK – State Higher School in Oswiecim, Poland
Daniel LESNIC – University of Leeds, United Kingdom
Witold LEWANDOWSKI – Gdańsk University of Technology, Poland
Guolu LI – Hebei University of Technology, Tianjin, China
Jun LI – Xi’an Jiaotong University, China
Baiquan LIN – China University of Mining and Technology, Xuzhou, China
Dawei LIU – Yanshan University, Qinhuangdao, China
Luis Norberto LÓPEZ DE LACALLE – University of the Basque Country, Bilbao, Spain
Ming LUO – Northwestern Polytechnical University, Xi’an, China
Xin MA – Shandong University, Jinan, China
Najmuldeen Yousif MAHMOOD – University of Technology, Baghdad, Iraq
Arun Kumar MAJUMDER – Indian Institute of Technology, Kharagpur, India
Paweł MALCZYK – Warsaw University of Technology, Poland
Miloš MATEJIĆ – University of Kragujevac, Serbia
Norkhairunnisa MAZLAN – Universiti Putra Malaysia, Serdang, Malaysia
Dariusz MAZURKIEWICZ – Lublin University of Technology, Poland
Florin MINGIREANU – Romanian Space Agency, Bucharest, Romania
Vladimir MITYUSHEV – Pedagogical University of Cracow, Poland
Adis MUMINOVIC – University of Sarajevo, Bosnia and Herzegovina
Baraka Olivier MUSHAGE – Université Libre des Pays des Grands Lacs, Goma, Congo (DRC)
Tomasz MUSZYŃSKI – Gdansk University of Technology, Poland
Mohamed NASR – National Research Centre, Giza, Egypt
Driss NEHARI – University of Ain Temouchent, Algeria
Oleksii NOSKO – Bialystok University of Technology, Poland
Grzegorz NOWAK – Silesian University of Technology, Gliwice, Poland
Iwona NOWAK – Silesian University of Technology, Gliwice, Poland
Samy ORABY – Pharos University in Alexandria, Egypt
Marcin PĘKAL – Warsaw University of Technology, Poland
Bo PENG – University of Huddersfield, United Kingdom
Janusz PIECHNA – Warsaw University of Technology, Poland
Maciej PIKULIŃSKI – Warsaw University of Technology, Poland
T.V.V.L.N. RAO – The LNM Institute of Information Technology, Jaipur, India
Andrzej RUSIN – Silesian University of Technology, Gliwice, Poland
Artur RUSOWICZ – Warsaw University of Technology, Poland
Benjamin SCHLEICH – Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
Jerzy SĘK – Lodz University of Technology, Poland
Reza SERAJIAN – University of California, Merced, USA
Artem SHAKLEIN – Udmurt Federal Research Center, Izhevsk, Russia
G.L. SHI – Guangxi University of Science and Technology, Liuzhou, China
Muhammad Faheem SIDDIQUI – Vrije University, Brussels, Belgium
Jarosław SMOCZEK – AGH University of Science and Technology, Cracow, Poland
Josip STJEPANDIC – PROSTEP AG, Darmstadt, Germany
Pavel A. STRIZHAK – Tomsk Polytechnic University, Russia
Vadym STUPNYTSKYY – Lviv Polytechnic National University, Ukraine
Miklós SZAKÁLL – Johannes Gutenberg-Universität Mainz, Germany
Agnieszka TOMASZEWSKA – Gdansk University of Technology, Poland
Artur TYLISZCZAK – Czestochowa University of Technology, Poland
Aneta USTRZYCKA – Institute of Fundamental Technological Research, Warsaw, Poland
Alper UYSAL – Yildiz Technical University, Turkey
Gabriel WĘCEL – Silesian University of Technology, Gliwice, Poland
Marek WĘGLOWSKI – Welding Institute, Gliwice, Poland
Frank WILL – Technische Universität Dresden, Germany
Michał WODTKE – Gdańsk University of Technology, Poland
Marek WOJTYRA – Warsaw University of Technology, Poland
Włodzimierz WRÓBLEWSKI – Silesian University of Technology, Gliwice, Poland
Hongtao WU – Nanjing University of Aeronautics and Astronautics, China
Jinyang XU – Shanghai Jiao Tong University, China
Zhiwu XU – Harbin Institute of Technology, China
Zbigniew ZAPAŁOWICZ – West Pomeranian University of Technology, Szczecin, Poland
Zdzislaw ZATORSKI – Polish Naval Academy, Gdynia, Poland
Wanming ZHAI – Southwest Jiaotong University, Chengdu, China
Xin ZHANG – Wenzhou University of Technology, China
Su ZHAO – Ningbo Institute of Materials Technology and Engineering, China

×