System identifications of a 2DOF pendulum controlled by QUBE-servo and its unwanted oscillation factors

Journal title

Archive of Mechanical Engineering




vol. 67


No 4


Le, Hoai Nam : Faculty of Mechanical Engineering, The University of Danang – University of Science andTechnology, Danang, Vietnam. ; Dang, Phuoc Vinh : Faculty of Mechanical Engineering, The University of Danang – University of Science andTechnology, Danang, Vietnam. ; Pham, Anh-Duc : Faculty of Mechanical Engineering, The University of Danang – University of Science andTechnology, Danang, Vietnam. ; Vo, Nhu Thanh : Faculty of Mechanical Engineering, The University of Danang – University of Science andTechnology, Danang, Vietnam.



system identification 2DOF pendulum ; QUBE-servo ; unwanted oscillation model

Divisions of PAS

Nauki Techniczne




Polish Academy of Sciences, Committee on Machine Building


[1] H. Hjalmarsson. System identification of complex and structured systems. European Journal of Control, 15(3-4): 275–310, 2019. doi: 10.3166/ejc.15.275-310.
[2] L. Ljung. System Identification: Theory for the User. 2nd edition, Pearson, 1998.
[3] P.V. Dang, S. Chatterton, P. Pennacchi, and A. Vania. Numerical investigation of the effect of manufacturing errors in pads on the behaviour of tilting-pad journal bearings. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 232(4):480–500, 2018. doi: 10.1177/1350650117721118.
[4] P.V. Dang, S. Chatterton, and P. Pennacchi. The effect of the pivot stiffness on the performances of five-pad tilting pad bearings. Lubricants, 7(7):61, 2019. doi: 10.3390/lubricants7070061.
[5] S. Chatterton, P. Pennacchi, A. Vania, and P.V. Dang. Cooled pads for tilting-pad journal bearings. Lubricants, 7(10):92, 2019. doi: 10.3390/lubricants7100092.
[6] S. Chatterton, P. Pennacchi, A. Vania, A. De Luca, and P.V. Dang. Tribo-design of lubricants for power loss reduction in the oil-film bearings of a process industry machine: Modelling and experimental tests. Tribology International, 130:133–145, 2019. doi: 10.1016/j.triboint.2018.09.014.
[7] M.Q. Phan and J.A. Frueh. System identification and learning control. In: Z. Bien, J-X. Xu, editors, Iterative Learning Control, chapter 15, pages 285–310. Springer, Boston, MA, 1998. doi: 10.1007/978-1-4615-5629-9_15.
[8] C. Shravankumar and R. Tiwari. Experimental identification of cracked rotor system parameters from the forward and backward whirl responses. Archive of Mechanical Engineering, 66(3):329–353, 2019. doi: 10.24425/ame.2019.129679.
[9] D.K. Roy and R. Tiwari. Development of identification procedure for the internal and external damping in a cracked rotor system undergoing forward and backward whirls. Archive of Mechanical Engineering, 66(2):229–255, 2019. doi: 10.24425/ame.2019.128446.
[10] A. Wadi, J. Lee, and L. Romdhane. Nonlinear sliding mode control of the Furuta pendulum. 2018 11th International Symposium on Mechatronics and its Applications (ISMA), Sharjah, United Arab Emirates, 4–6 March 2018. doi: 10.1109/ISMA.2018.8330131.
[11] J.L.D. Madrid, E.A.G. Querubín, and P.A. Ospina-Henao. Predictive control of a Furata pendulum. 2017 IEEE 3rd Colombian Conference on Automatic Control (CCAC), Cartagena, Colombia, 18–20 October, 2017. doi: 10.1109/CCAC.2017.8276483.
[12] I. Paredes, M. Sarzosa, M. Herrera, P. Leica, and O. Camacho. Optimal-robust controller for Furuta pendulum based on linear model. 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM), Salinas, Equador, 16–20 October, 2017. doi: 10.1109/ETCM.2017.8247510.
[13] M. Antonio-Cruz, R. Silva-Ortigoza, J. Sandoval-Gutiérrez, C.A. Merlo-Zapata, H. Taud, C.Márquez-Sánchez, and V.M.Hernandez-Guzmán. Modeling, simulation, and construction of a Furuta pendulum test-bed. 2015 International Conference on Electronics, Communications and Computers (CONIELECOMP), pages 72–79, Cholula, Mexico, 25–27 February, 2015. doi: 10.1109/CONIELECOMP.2015.7086928.
[14] P.X. La Hera, L.B. Freidovich, A.S. Shiriaev, and U. Mettin. New approach for swinging up the Furuta pendulum: Theory and experiments. Mechatronics, 19(8):1240–1250, 2009. doi: 10.1016/j.mechatronics.2009.07.005.
[15] K. Furuta and M. Iwase. Swing-up time analysis of pendulum. Bulletin of the Polish Academy of Sciences: Technical Sciences, 52(3):153–163, 2004.
[16] K. Andrzejewski, M. Czyżniewski, M. Zielonka, E. Łangowski, and T. Zubowicz. A comprehensive approach to double inverted pendulum modelling. Archives of Control Sciences, 29(3):459–483, 2019. doi: 10.24425/acs.2019.130201.
[17] M. Gäfvert, J. Svensson, and K.J. Astrom. Friction and friction compensation in the Furuta pendulum. 1999 European Control Conference (ECC), pages 3154–3159, Karlsruhe, Germany, 31 August – 3 September, 1999. doi: 10.23919/ECC.1999.7099812.
[18] QUBE-servo Experiment for LabVIEW Users. Student book. Quanser System, 2014.
[19] A. Kathpal and A. Singla. SimMechanics™ based modeling, simulation and real-time control of Rotary Inverted Pendulum. 2017 11th International Conference on Intelligent Systems and Control (ISCO), pages 166–172, Coimbatore, India, 5–6 January, 2017. doi: 0.1109/ISCO.2017.7855975.
[20] D.L. Peters. Design of a higher order attachment for the Quanser Qube. 2016 American Control Conference, pages 6634–6639, Boston, USA, 6–8 July, 2016. doi: 10.1109/ACC.2016.7526715.
[21] R.M. Reck. Validating DC motor models on the Quanser Qube Servo. In: Proceedings of the ASME 2018 Dynamic Systems and Control Conference (DSCC2018), V002T16A005, Atlanta, USA, 30 September–3 October, 2018. doi: 10.1115/DSCC2018-9158.
[22] Y.V. Hote. Analytical design of lead compensator for Qube Servo system with inertia disk: An experimental validation. 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I), pages 341–346, Noida, India, 14–17 December 2016. doi: 10.1109/IC3I.2016.7917986.
[23] N. Krishnan. Estimation and Control of the Nonlinear Rotary Inverted Pendulum: Theory and Hardware Implementation. M.Sc. Thesis, San Diego State University, San Diego, USA, 2019.
[24] A. Bisoi, A.K. Samantaray, and R. Bhattacharyya. Control strategies for DC motors driving rotor dynamic systems through resonance. Journal of Sound and Vibration, 411:304–327, 2017. doi: 10.1016/j.jsv.2017.09.014.
[25] G. Bartolini, E. Punta, and T. Zolezzi. Approximability properties for second-order sliding mode control systems. IEEE Transactions on Automatic Control, 52(10):1813–1825, 2007. doi: 10.1109/TAC.2007.906179.




Artykuły / Articles


DOI: 10.24425/ame.2020.131699 ; ISSN 0004-0738, e-ISSN 2300-1895


Archive of Mechanical Engineering; 2020; vol. 67; No 4; 435-450


The Editorial Board of the Archive of Mechanical Engineering (AME) sincerely expresses gratitude to the following individuals who devoted their time to review papers submitted to the journal. Particularly, we express our gratitude to those who reviewed papers several times.

List of reviewers of volume 68 (2021)
Ahmad ABDALLA – Huaiyin Institute of Technology, China
Sara ABDELSALAM – University of California, Riverside, United States
Muhammad Ilman Hakimi Chua ABDULLAH – Universiti Teknikal Malaysia Melaka, Malaysia
Hafiz Malik Naqash AFZAL – University of New South Wales, Sydney, Australia
Reza ANSARI – University of Guilan, Rasht, Iran
Jeewan C. ATWAL – Indian Institute of Technology Delhi, New Delhi, India
Hadi BABAEI – Islamic Azad University, Tehran, Iran
Sakthi BALAN – K. Ramakrishnan college of Engineering, Trichy, India
Leszek BARANOWSKI – Military University of Technology, Warsaw, Poland
Elias BRASSITOS – Lebanese American University, Byblos, Lebanon
Tadeusz BURCZYŃSKI – Institute of Fundamental Technological Research, Warsaw, Poland
Nguyen Duy CHINH – Hung Yen University of Technology and Education, Hung Yen, Vietnam
Dorota CHWIEDUK – Warsaw University of Technology, Poland
Adam CISZKIEWICZ – Cracow University of Technology, Poland
Meera CS – University of Petroleum and Energy Studies, Duhradun, India
Piotr CYKLIS – Cracow University of Technology, Poland
Abanti DATTA – Indian Institute of Engineering Science and Technology, Shibpur, India
Piotr DEUSZKIEWICZ – Warsaw University of Technology, Poland
Dinesh DHANDE – AISSMS College of Engineering, Pune, India
Sufen DONG – Dalian University of Technology, China
N. Godwin Raja EBENEZER – Loyola-ICAM College of Engineering and Technology, Chennai, India
Halina EGNER – Cracow University of Technology, Poland
Fehim FINDIK – Sakarya University of Applied Sciences, Turkey
Artur GANCZARSKI – Cracow University of Technology, Poland
Peng GAO – Northeastern University, Shenyang, China
Rafał GOŁĘBSKI – Czestochowa University of Technology, Poland
Andrzej GRZEBIELEC – Warsaw University of Technology, Poland
Ngoc San HA – Curtin University, Perth, Australia
Mehmet HASKUL – University of Sirnak, Turkey
Michal HATALA – Technical University of Košice, Slovak Republic
Dewey HODGES – Georgia Institute of Technology, Atlanta, United States
Hamed HONARI – Johns Hopkins University, Baltimore, United States
Olga IWASINSKA – Warsaw University of Technology, Poland
Emmanuelle JACQUET – University of Franche-Comté, Besançon, France
Maciej JAWORSKI – Warsaw University of Technology, Poland
Xiaoling JIN – Zhejiang University, Hangzhou, China
Halil Burak KAYBAL – Amasya University, Turkey
Vladis KOSSE – Queensland University of Technology, Brisbane, Australia
Krzysztof KUBRYŃSKI – Air Force Institute of Technology, Warsaw, Poland
Waldemar KUCZYŃSKI – Koszalin University of Technology, Poland
Igor KURYTNIK – State Higher School in Oswiecim, Poland
Daniel LESNIC – University of Leeds, United Kingdom
Witold LEWANDOWSKI – Gdańsk University of Technology, Poland
Guolu LI – Hebei University of Technology, Tianjin, China
Jun LI – Xi’an Jiaotong University, China
Baiquan LIN – China University of Mining and Technology, Xuzhou, China
Dawei LIU – Yanshan University, Qinhuangdao, China
Luis Norberto LÓPEZ DE LACALLE – University of the Basque Country, Bilbao, Spain
Ming LUO – Northwestern Polytechnical University, Xi’an, China
Xin MA – Shandong University, Jinan, China
Najmuldeen Yousif MAHMOOD – University of Technology, Baghdad, Iraq
Arun Kumar MAJUMDER – Indian Institute of Technology, Kharagpur, India
Paweł MALCZYK – Warsaw University of Technology, Poland
Miloš MATEJIĆ – University of Kragujevac, Serbia
Norkhairunnisa MAZLAN – Universiti Putra Malaysia, Serdang, Malaysia
Dariusz MAZURKIEWICZ – Lublin University of Technology, Poland
Florin MINGIREANU – Romanian Space Agency, Bucharest, Romania
Vladimir MITYUSHEV – Pedagogical University of Cracow, Poland
Adis MUMINOVIC – University of Sarajevo, Bosnia and Herzegovina
Baraka Olivier MUSHAGE – Université Libre des Pays des Grands Lacs, Goma, Congo (DRC)
Tomasz MUSZYŃSKI – Gdansk University of Technology, Poland
Mohamed NASR – National Research Centre, Giza, Egypt
Driss NEHARI – University of Ain Temouchent, Algeria
Oleksii NOSKO – Bialystok University of Technology, Poland
Grzegorz NOWAK – Silesian University of Technology, Gliwice, Poland
Iwona NOWAK – Silesian University of Technology, Gliwice, Poland
Samy ORABY – Pharos University in Alexandria, Egypt
Marcin PĘKAL – Warsaw University of Technology, Poland
Bo PENG – University of Huddersfield, United Kingdom
Janusz PIECHNA – Warsaw University of Technology, Poland
Maciej PIKULIŃSKI – Warsaw University of Technology, Poland
T.V.V.L.N. RAO – The LNM Institute of Information Technology, Jaipur, India
Andrzej RUSIN – Silesian University of Technology, Gliwice, Poland
Artur RUSOWICZ – Warsaw University of Technology, Poland
Benjamin SCHLEICH – Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
Jerzy SĘK – Lodz University of Technology, Poland
Reza SERAJIAN – University of California, Merced, USA
Artem SHAKLEIN – Udmurt Federal Research Center, Izhevsk, Russia
G.L. SHI – Guangxi University of Science and Technology, Liuzhou, China
Muhammad Faheem SIDDIQUI – Vrije University, Brussels, Belgium
Jarosław SMOCZEK – AGH University of Science and Technology, Cracow, Poland
Josip STJEPANDIC – PROSTEP AG, Darmstadt, Germany
Pavel A. STRIZHAK – Tomsk Polytechnic University, Russia
Vadym STUPNYTSKYY – Lviv Polytechnic National University, Ukraine
Miklós SZAKÁLL – Johannes Gutenberg-Universität Mainz, Germany
Agnieszka TOMASZEWSKA – Gdansk University of Technology, Poland
Artur TYLISZCZAK – Czestochowa University of Technology, Poland
Aneta USTRZYCKA – Institute of Fundamental Technological Research, Warsaw, Poland
Alper UYSAL – Yildiz Technical University, Turkey
Gabriel WĘCEL – Silesian University of Technology, Gliwice, Poland
Marek WĘGLOWSKI – Welding Institute, Gliwice, Poland
Frank WILL – Technische Universität Dresden, Germany
Michał WODTKE – Gdańsk University of Technology, Poland
Marek WOJTYRA – Warsaw University of Technology, Poland
Włodzimierz WRÓBLEWSKI – Silesian University of Technology, Gliwice, Poland
Hongtao WU – Nanjing University of Aeronautics and Astronautics, China
Jinyang XU – Shanghai Jiao Tong University, China
Zhiwu XU – Harbin Institute of Technology, China
Zbigniew ZAPAŁOWICZ – West Pomeranian University of Technology, Szczecin, Poland
Zdzislaw ZATORSKI – Polish Naval Academy, Gdynia, Poland
Wanming ZHAI – Southwest Jiaotong University, Chengdu, China
Xin ZHANG – Wenzhou University of Technology, China
Su ZHAO – Ningbo Institute of Materials Technology and Engineering, China