Details

Title

Numerical and experimental verification of impact response of laminated aluminum composite structure

Journal title

Archive of Mechanical Engineering

Yearbook

2020

Volume

vol. 67

Numer

No 2

Affiliation

Wang, Jifeng : General Motors Global Technical Center, 29360 William Durant Boulevard, Warren, Michigan 48092-2025, USA. ; Morris, Tyler P. : General Motors Global Technical Center, 29360 William Durant Boulevard, Warren, Michigan 48092-2025, USA. ; Bihamta, Reza : General Motors Global Technical Center, 29360 William Durant Boulevard, Warren, Michigan 48092-2025, USA. ; Pan, Ye-Chen : General Motors Global Technical Center, 29360 William Durant Boulevard, Warren, Michigan 48092-2025, USA.

Authors

Keywords

laminated aluminum structure ; axial drop ; buckling ; three-point bending ; flexural response ; delamination

Divisions of PAS

Nauki Techniczne

Coverage

127-147

Publisher

Polish Academy of Sciences, Committee on Machine Building

Bibliography

[1] D. Zangani, M. Robinson, and A.G. Gibson. Evaluation of stiffness terms for z-cored sandwich panels. Applied Composite Materials, 14:159–175, 2007. doi: 10.1007/s10443-007-9038-y.
[2] J. Yu, E. Wang, J. Li, and Z. Zheng. Static and low-velocity impact behavior of sandwich beams with closed-cell aluminum-foam core in three-point bending. International Journal of Impact Engineering, 35(8):885–894, 2008. doi: 10.1016/j.ijimpeng.2008.01.006.
[3] Q. Sun, Z. Meng, G. Zhou, S.-P. Lin, H. Kang, S. Keten, H. Guo, and X. Su. Multi-scale computational analysis of unidirectional carbon fiber reinforced polymer composites under various loading conditions. Composite Structures, 196:30–43, 2018. doi: 10.1016/j.compstruct.2018.05.025.
[4] G.S. Dhaliwal and G.M. Newaz. Modeling low velocity impact response of carbon fiber reinforced aluminum laminates (CARALL). Journal of Dynamic Behavior of Materials, 2:181–193, 2016. doi: 10.1007/s40870-016-0057-3.
[5] G.-C. Yu, L.-Z. Wu, L. Ma, and J. Xiong. Low velocity impact of carbon fiber aluminum laminates. Composite Structures, 119:757–766, 2014. doi: 10.1016/j.compstruct.2014.09.054.
[6] M. Koc, F.O. Sonmez, N. Ersoy, and K. Cinar. Failure behavior of composite laminates under four-point bending. Journal of Composite Materials, 50(26): 3679–3697, 2016. doi: 10.1177/0021998315624251.
[7] A. Shojaei, G. Li, P.J. Tan, and J. Fish. Dynamic delamination in laminated fiber reinforced composites: A continuum damage mechanics approach. International Journal of Solid and Structures, 71:262–276, 2015. doi: 10.1016/j.ijsolstr.2015.06.029.
[8] J. Wang, R. Bihamta, T.P. Morris, and Y.-C. Pan. Numerical and experimental investigation of a laminated aluminum composite structure. Applied Composite Materials, 26:1177–1188, 2019. doi: 10.1007/s10443-019-09773-7.
[9] D. Zangani, M. Robinson, and A.G. Gibson. Energy absorption characteristics of web-core sandwich composite panels subjected to drop-weight impact. Applied Composite Materials, 15:139–156, 2008. doi: 10.1007/s10443-008-9063-5.
[10] Q.-R. Yang, J.-X. Liu, S.-K. Li, and T.-T. Wu. Bending mechanical property and failure mechanisms of woven carbon fiber-reinforced aluminum alloy composite. Rare Metals, 35(12): 915–919, 2016. doi: 10.1007/s12598-014-0271-x.
[11] M. Kinawy, R. Butler, and G.W. Hunt. Bending strength of delaminated aerospace composites. Philosophical Transactions of The Royal Society, 370:1780–1797, 2012. doi: 10.1098/rsta.2011.0337.
[12] C. Kabogu, I. Mohagheghian, J. Zhou, Z. Guan, W. Cantwell, S. John, B.R.K. Blackman, A.J. Kinloch, and J.P. Dear. High-velocity impact deformation and perforation of fibre metal laminates. Journal of Materials Science, 53:4209–4228, 2018. doi: 10.1007/s10853-017-1871-2.
[13] X. Wang, X. Zhao, Z. Wu, Z. Zhu, and Z. Wang. Interlaminar shear behavior of basalt FRP and hybrid FRP laminates. Journal of Composite Materials, 50(8):1073–1084, 2016. doi: 10.1177/0021998315587132.
[14] C. Liu, D. Du, H. Li, Y. Hu, Y. Xu, J. Tian, G. Tao, and J. Tao. Interlaminar failure behavior of GLARE laminates under short-beam three-point-bending load. Composites Part B: Engineering, 97:361–367, 2016. doi: 10.1016/j.compositesb.2016.05.003.
[15] A. Yapici and M. Metin. Effect of low velocity impact damage on buckling properties. Engineering, 1:161–166, 2009. doi: 10.4236/eng.2009.13019.
[16] J. Sarkar, T.R.G. Kutty, D.S. Wilkinson, J.D. Embury, and D.J. Lloyd. Tensile properties and bendability of T4 treated AA6111 aluminum alloys. Materials Science and Engineering: A, 369(1-2):258–266, 2004. doi: 10.1016/j.msea.2003.11.022.
[17] 3M Automotive Division, 3M TM Structureal Adhesive Tape SAT1010M Technical Data Sheet, 3M, St. Paul, 2019.
[18] C.J. Corbett, L. Laszczyk, and O. Rebuffet. Assessing and validating the crash behavior of Securalex HS, a high-strength crashworthy aluminum alloy, using the GISSMO model. In 14th International LS-Dyna Users Conference, Detroit, 2016.
[19] G. Falkinger, N. Sotirov, and P. Simon. An investigation of modeling approaches for material instability of aluminum sheet metal using the GISSMO-model. In 10th European LS-DYNA Conference, Wurzburg, 2015.
[20] Livermore Softwar Technology Corporation (LSTC), LS-DYNA®KEYWORD USER'S MANUAL VOLUME II Material Models, 2012.
[21] A. Mostafa, K. Shankar, and E.V. Morozov. Experimental, theoretical and numerical investigation of the flexural behaviour of the composite sandwich panels with PVC foam core. Applied Composite Materials, 21:661–675, 2014. doi: 10.1007/s10443-013-9361-4.
[22] G.A.O. Davies and I. Guiamatsia. The problem of the cohesive zone in numerically simulating delamination/debonding failure modes. Applied Composite Materials, 19:831–838, 2012. doi: 10.1007/s10443-012-9257-8.
[23] F. Dogan, H. Hadavinia, T. Donchev, and P.S. Bhonge. Delamination of impacted composite structures by cohesive zone interface elements and tiebreak contact. Central European Journal of Engineering, 2(4):612–626, 2012. doi: 10.2478/s13531-012-0018-0.
[24] C. Hesch and P. Betsch. Continuum mechanical considerations for rigid bodies and fluid-structure interaction problems. Archive of Mechanical Engineering, 60(1):95–108, 2013. doi: 10.2478/meceng-2013-0006.
[25] J.J.C. Remmers and R. de Borst. Delamination buckling of fibre-metal laminates. Composites Science and Technology, 61(15):2207–2213, 2001. doi: 10.1016/S0266-3538(01)00114-2.

Date

2020.05.05

Type

Artykuły / Articles

Identifier

DOI: 10.24425/ame.2020.131687 ; ISSN 0004-0738, e-ISSN 2300-1895

Source

Archive of Mechanical Engineering; 2020; vol. 67; No 2; 127-147
×