Experimental identification of cracked rotor system parameters from the forward and backward whirl responses

Journal title

Archive of Mechanical Engineering




vol. 66


No 3


Shravankumar, C. : Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781039, India. ; Tiwari, Rajiv : Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781039, India.



development of fatigue crack ; crack flexibility ; directional (full) spectrum ; higher harmonics ; forward and backward whirl

Divisions of PAS

Nauki Techniczne




Polish Academy of Sciences, Committee on Machine Building


[1] Y. Ishida. Cracked rotors: Industrial machine case histories and nonlinear effects shown by a simple Jeffcott rotor. Mechanical Systems and Signal Processing, 22(4):805–817, 2008. doi: 10.1016/j.ymssp.2007.11.005.
[2] G. Sabnavis, R.G. Kirk, M. Kasarda, and D. Quinn. Cracked shaft detection and diagnostics: a literature review. The Shock and Vibration Digest, 36(4):287–296, 2004. doi: 10.1177/0583102404045439.
[3] N. Dharmaraju, R.Tiwari, and S. Talukdar. Identification of an open crack model in a beam based on force-response measurements. Computers & Structures, 82(2-3):167–179, 2003. doi: 10.1016/j.compstruc.2003.10.006.
[4] A.S. Sekhar. Crack identification in a rotor system: a model-based approach. Journal of Sound and Vibration, 270(4-5):887–902, 2004. doi: 10.1016/S0022-460X(03)00637-0.
[5] A.C. Chaselevris and C.A. Papodopoulos. Experimental detection of an early developed crack in rotor-bearing system using an AMB. Third International Conference of Engineering against Failure, June 26–28, 2013, Kos, Greece.
[6] P. Gudmundson. The dynamic behaviour of slender structures with cross-sectional cracks. Journal of the Mechanics and Physics of Solids, 31(4):329–345, 1983. doi: 10.1016/0022-5096(83)90003-0.
[7] C.A. Papadopoulos and A.D. Dimarogonas. Stability of the cracked rotors in the coupled vibration mode. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 110(3):356–359, 1988.
[8] A.K. Darpe, K. Gupta, and A. Chawla. Experimental investigations of the response of a cracked rotor to periodic axial excitation. Journal of Sound and Vibration, 260(2):265–286, 2003. doi: 10.1016/S0022-460X(02)00944-6.
[9] T. Zhou, Z. Sun, J. Xu, andW. Han. Experimental analysis of cracked rotor. Journal of Dynamic systems, Measurement, and Control, 127(3):313–320, 2005. doi: 10.1115/1.1978908.
[10] P. Pennacchi, N. Bachschmid, and A. Vania. A model-based identification method of transverse cracks in rotating shafts suitable for industrial machines. Mechanical Systems and Signal Processing, 20(8):2112–2147, 2006. doi: .
[11] J.K. Sinha. Higher order spectra for crack and misalignment identification in the shaft of a rotating machine. Structural Health Monitoring, 6(4):325–334, 2007. doi: 10.1177/1475921707082309.
[12] Z. Cai. Vibration diagnostics of elastic shafts with a transverse crack. Master Thesis, Faculty of Computing, Health and Science, Edith Cowan University, Perth, Australia 2011.
[13] S.K. Singh and R. Tiwari. Detection and localization of multiple cracks in a shaft system: An experimental investigation. Measurement, 53:182–193, 2014. doi: 10.1016/j.measurement.2014.03.028.
[14] D. Southwick. Using full spectrum plots: Part 2. Orbit, 15(2):10–16. 1994.
[15] P. Goldman and A. Muszynska. Application of full spectrum to rotating machinery diagnostics. Orbit, 17–21, 1999.
[16] J. Tuma, and J. Bilos. Fluid induced instability of rotor systems with journal bearings. Engineering Mechanics, 14(1-2):69–80, 2007.
[17] T.H. Patel and A.K. Darpe. Application of full spectrum analysis for rotor fault diagnosis. In: IUTAM Symposium on Emerging Trends in Rotor Dynamics, 1011:535–545, 2011.
[18] C. Shravankumar and R. Tiwari. Detection of fatigue crack in a rotor system using full-spectrum based estimation. Sadhana, 41(2):239–251, 2016. doi: 10.1007/s12046-015-0452-9.
[19] C. Shravankumar and R. Tiwari. Model-based crack identification using full-spectrum. In Proceedings of the ASME 2013 Gas Turbine India Conference, Bangalore, Karnataka, India, December 5–6, 2013. doi: 10.1115/GTINDIA2013-3756.
[20] C. Shravankumar and R. Tiwari. Identification of stiffness and periodic breathing forces of a transverse switching crack in a Laval rotor. Fatigue and Fracture of Engineering Materials and Structures, 36(3):254–269, 2012. doi: 10.1111/j.1460-2695.2012.01718.x.
[21] C. Shravankumar, R. Tiwari, and A. Mahibalan. Experimental identification of rotor crack forces. In: Proceedings of the 9th IFToMM International Conference on Rotor Dynamics: pp. 361–371, 2015. doi: 10.1007/978-3-319-06590-8_28.
[22] X.B. Rao, Y.D. Chu, Y.X. Chang, J.G. Zhang, and Y.P. Tian. Dynamics of a cracked rotor system with oil-film force in parameter space. Nonlinear Dynamics, 88(4):2347–2357, 2017. doi: 10.1007/s11071-017-3381-9.
[23] B.C. Wen and Y.B.Wang. Theoretical research, calculation and experiments of cracked shaft dynamical responses. In Proceedings of International Conference on Vibration in Rotating Machinery, pp. 473–478, London, UK, 1988.
[24] Prashant Kumar. Elements of Fracture Mechanics. Wheeler Publishing, New Delhi, 1999.
[25] M.G. Maalouf. Slow-speed: vibration signal analysis. Orbit, 27(2):4–16, 2007.
[26] R. Tiwari. Rotor Systems: Analysis and Identification. CRC Press, USA, 2017. doi: 10.1201/9781315230962.
[27] L.G.G. Villani, S. da Siva, and A. Cunha Jr. Damage detection in uncertain nonlinear systems based on stochastic Volterra series. Mechanical Systems and Signal Processing, 125:288–310, 2019. doi: 10.1016/j.ymssp.2018.07.028.




Artykuły / Articles


DOI: 10.24425/ame.2019.129679 ; ISSN 0004-0738, e-ISSN 2300-1895


Archive of Mechanical Engineering; 2019; vol. 66; No 3; 329-353