Analysis of Properties of a Lung Mechanical Model During Artificial Ventilation Using Measurement Station

Journal title

Metrology and Measurement Systems




No 3



lungs mechanical model ; Interrupter Technique ; Optimized Ventilator Waveform ; artificial ventilation

Divisions of PAS

Nauki Techniczne




Polish Academy of Sciences Committee on Metrology and Scientific Instrumentation




Artykuły / Articles


DOI: 10.2478/v10178-010-0036-2 ; ISSN 2080-9050, e-ISSN 2300-1941


Metrology and Measurement Systems; 2010; No 3; 427-438


Jabłoński I. (2008), The problem of measurement data complexity for example of the general model of the central respiratory generator and recurrent plots analysis, Metrol. Meas. Syst, XV, 4, 457. ; Polak A. (2006), A multi-method approach to measurement of respiratory system mechanics, Metrol. Meas. Syst, XIII, 1, 3. ; Jabłoński I. (2006), Computer-aided evaluation of a new interrupter algorithm in respiratory mechanics measurement, Biocybernetics and Biomedical Engineering, 26, 3, 33. ; Jabłoński I. (2009), Frequency-domain identification of the respiratory system model during the interrupter experiment, Measurement, 42, 3, 390. ; Jabłoński I. (2008), Frequency indexes of respiration during interrupter experiment, Metrol. Meas. Syst, XV, 2, 153. ; Kaczka D. (1999), Technique to Determine Inspiratory Impedance during Mechanical Ventilation: Implications for Flow Limited Patients, Annals of Biomedical Engineering, 27, 340. ; Baconnier P. (1995), A computer program for automatic measurement of respiratory mechanics in artificially ventilated patients, Computer Methods and Programs in Biomedicine, 47, 205. ; Polak A. (2006), Nonlinear model for mechanical ventilation of human lungs, Computers in Biology and Medicine, 36, 41. ; Gajda J. (2009), Identification of the human respiratory system during experiment with negative pressure impulse excitation, Metrol. Meas. Syst, XVI, 4, 569. ; Bates J. (1988), A theoretical analysis of interrupter technique for measuring respiratory mechanics, J. Appl. Physiol, 64, 2204. ; Lutchen K. (1993), Optimal ventilation waveforms for estimating low-frequency respiratory impedance, J. Appl. Physiol, 75, 478. ; Dubois A. (1956), Oscillation mechanics of lungs and chest in man, J. Appl. Physiol, 8, 587. ; Lutchen K. (1996), Bioengineering Approaches to Pulmonary Physiology and Medicine, 227. ; J. Von Neergaard (1927), Die Messung der Strömungswiderstände in den Atemwegen des Menschen, insbesondere bei Asthma und Emphysem, Z. Klin. Med, 105, 51. ; Liistro G. (1989), Reassessment of the interruption technique for measuring flow resistance in humans, J. Appl. Physiol, 67, 933. ; Jabłoński I. (2009), A forward model of the respiratory system during airflow interruption, Metrol. Meas. Syst, XVI, 2, 219. ; Mroczka J. (2009), Inverse problems formulated in terms of first-kind Fredholm integral equations in indirect measurements, Metrol. Meas. Syst, XVI, 3, 333. ; Jabłoński I. (2007), A station for the respiratory mechanics measurement by occlusion techniques, Metrol. Meas. Syst, XIV, 2, 229. ; Jakuszkin K. (2009), Analiza właściwości modelu mechanicznego płuc wykorzystująca technikę zoptymalizowanej fali wentylacyjnej, Modelowanie i Pomiary w Medycynie.