Applied sciences

Archive of Mechanical Engineering

Content

Archive of Mechanical Engineering | 2011 | vol. 58 | No 1 |

Download PDF Download RIS Download Bibtex

Abstract

The minimum-time problem for a glider flying in the vertical plane is considered. The glider is regarded as a particle moving in the atmosphere in given thermal conditions. The problem is formulated in optimal control and solved using direct pseudospectral Chebysev's method. The data are taken for the Word Class Glider PW-5 "Smyk". Computed optimum results are compared with glider's trajectories from the Second Domestic Glider Championship 2006, Suwałki, Poland.

Go to article

Authors and Affiliations

Krzysztof Rogowski
Ryszard Maroński
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a model of a rapping system of an electrostatic precipitator. The rapping system consists of a set of collecting electrodes hanging on a suspension bar and braced together in a brushing bar. The suspension and brushing bars are modeled using the rigid finite element method, while the collecting plates are modeled using the hybrid method. The method combines the rigid finite element method with the classical finite element method. As a result, the mass matrix is diagonal. Some results of numerical simulations concerning free vibrations of the collecting plates and the influence of the number of elements, into which the plate is divided, on the vibrations of the rapping system are presented.

Go to article

Authors and Affiliations

Iwona Adamiec-Wójcik
Download PDF Download RIS Download Bibtex

Abstract

The study presented here offers an analysis of the heat flow through the wall of the Yankee cylinder when regarded as a thin-walled vessel. The effect of the selected design and process parameters (i.e. cylinder diameter and steam pressure) on density of the heating stream has been analyzed and discussed for both cast iron and steel cylinders. Based on the work presented here, the optimal ranges for steam pressure have been derived and proposed for cylinders mounted at various locations within the drying section.

Go to article

Authors and Affiliations

Włodzimierz Kawka
Mariusz Reczulski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a research program carried out to improve understanding of the fluid dynamics mechanisms that lead to rotating stall in the axial flow low speed compressor stage. The stalling behavior of this compressor stage was studied by measuring unsteady casing pressure by means of a circumferentially and axially spaced array of high frequency pressure transducers. Another probe used was a disc static pressure probe, with the pressure transducer, for in-flow and out-flow measurements along the blade span. It was expected that understanding of the fluid dynamics will facilitate at least two important tasks. The first was to accurately predict of when and how a particular compressor would stall. The second was to control, delay, or eventually suppress the rotating stall and surge. In consequence, one could extend the useful operating range of the axial compressor. Another motivation for the research was to compare the results from the three applied analysis techniques by using a single stall inception event. The first one was a simple visual inspection of the traces, which brought about a very satisfactory effect. The second one was application of spatial Fourier decomposition to the analysis of stall inception data, and the third method of analysis consisted in application of wavelet filtering in order to better understand the physical mechanisms which lead to rotating stall. It was shown that each of these techniques would provide different information about compressor stall behavior, and each method had unique advantages and limitations.

Go to article

Authors and Affiliations

Marcin Ziach
Mirosław Majkut
Andrzej Witkowski
Download PDF Download RIS Download Bibtex

Abstract

The paper reports on investigation and development of a flywheel device intended for an energy storage prototype. The goal was to design and experimentally verify the concept of self-integrated flywheel with smart control of energy flow and accumulation. The Flywheel Energy Storage System (FESS) must has high energy efficiency and structural robustness. Investigation on structural dynamics of the composite flywheel connected with outer type rotor was carried out using Finite Element Method. The FESS is designed to run in vacuum and is supported on low-energy, controlled, active magnetic bearings (AMBs). The flywheel device of 10 MJ energy density and a weight of 150 kg with two integrated rotors/generators of 50 kW power density each is intended to operate up to 40 000 rpm.

Go to article

Authors and Affiliations

Arkadiusz Mystkowski
Artur Rowiński
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper is to present an in-pipe modular robotic system that can navigate inaccessible industrial pipes in order to check their condition, locate leakages, and clean the ventilation systems. The aspects concerning the development of a lightweight and energy efficient modular robotic system are presented. The paper starts with a short introduction about modular inspection systems in the first chapter, followed by design aspects and finalizing with the test of the developed robotic system.

Go to article

Authors and Affiliations

A. Adrianluţei
Mihai Tâtar
Vistrian Mâtieş
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a prototype of a rehabilitation robot for lower extremities. It is created on the basis of cylindrical kinematic model, equipped with two rigid arms, special handles and fixtures. It has five active degrees of freedom and is designed to repeat the trajectories generated by physiotherapist during the learning phase. Presented prototype of rehabilitation robot has the ability to replay different types of trained exercises such as: hip and knee flexion/extension, leg abduction/adduction. The protection system (including overload detection) implemented in the robot ensures safe working with patients.

Go to article

Authors and Affiliations

Marcin Kaczmarski
Grzegorz Granosik
Download PDF Download RIS Download Bibtex

Abstract

A complete system of a Laser Radar is described in this paper. One explains the principles of the laser and all additional devices used in this system in order to obtain a compact and eye-safe system. The principle and realization of algorithms for controlling the cruise and speed of the vehicle are described. By applying modal control, and choosing the optimal mode for reducing the speed, one derives the system equation and determines its coefficients. Finally, the paper presents simulations of the laser scanning system, the modal control system and the behavior of the system affected by different errors and disturbances. The effects of instrumental errors are defined and simulation is performed illustrating how such a control system is influenced by internal and external disturbances.

Go to article

Authors and Affiliations

Alexander Zbrutsky
Maryam Kaveshgar

Instructions for authors

About the Journal
Archive of Mechanical Engineering is an international journal publishing works of wide significance, originality and relevance in most branches of mechanical engineering. The journal is peer-reviewed and is published both in electronic and printed form. Archive of Mechanical Engineering publishes original papers which have not been previously published in other journal, and are not being prepared for publication elsewhere. The publisher will not be held legally responsible should there be any claims for compensation. The journal accepts papers in English.

Archive of Mechanical Engineering is an Open Access journal. The journal does not have article processing charges (APCs) nor article submission charges.

Original high quality papers on the following topics are preferred:

  • Mechanics of Solids and Structures,
  • Fluid Dynamics,
  • Thermodynamics, Heat Transfer and Combustion,
  • Machine Design,
  • Computational Methods in Mechanical Engineering,
  • Robotics, Automation and Control,
  • Mechatronics and Micro-mechanical Systems,
  • Aeronautics and Aerospace Engineering,
  • Heat and Power Engineering.

All submissions to the AME should be made electronically via Editorial System - an online submission and peer review system at: https://www.editorialsystem.com/ame

More detailed instructions for Authors can be found there.

Reviewers


The Editorial Board of the Archive of Mechanical Engineering (AME) sincerely expresses gratitude to the following individuals who devoted their time to review papers submitted to the journal. Particularly, we express our gratitude to those who reviewed papers several times.

List of reviewers of volume 68 (2021)
Ahmad ABDALLA – Huaiyin Institute of Technology, China
Sara ABDELSALAM – University of California, Riverside, United States
Muhammad Ilman Hakimi Chua ABDULLAH – Universiti Teknikal Malaysia Melaka, Malaysia
Hafiz Malik Naqash AFZAL – University of New South Wales, Sydney, Australia
Reza ANSARI – University of Guilan, Rasht, Iran
Jeewan C. ATWAL – Indian Institute of Technology Delhi, New Delhi, India
Hadi BABAEI – Islamic Azad University, Tehran, Iran
Sakthi BALAN – K. Ramakrishnan college of Engineering, Trichy, India
Leszek BARANOWSKI – Military University of Technology, Warsaw, Poland
Elias BRASSITOS – Lebanese American University, Byblos, Lebanon
Tadeusz BURCZYŃSKI – Institute of Fundamental Technological Research, Warsaw, Poland
Nguyen Duy CHINH – Hung Yen University of Technology and Education, Hung Yen, Vietnam
Dorota CHWIEDUK – Warsaw University of Technology, Poland
Adam CISZKIEWICZ – Cracow University of Technology, Poland
Meera CS – University of Petroleum and Energy Studies, Duhradun, India
Piotr CYKLIS – Cracow University of Technology, Poland
Abanti DATTA – Indian Institute of Engineering Science and Technology, Shibpur, India
Piotr DEUSZKIEWICZ – Warsaw University of Technology, Poland
Dinesh DHANDE – AISSMS College of Engineering, Pune, India
Sufen DONG – Dalian University of Technology, China
N. Godwin Raja EBENEZER – Loyola-ICAM College of Engineering and Technology, Chennai, India
Halina EGNER – Cracow University of Technology, Poland
Fehim FINDIK – Sakarya University of Applied Sciences, Turkey
Artur GANCZARSKI – Cracow University of Technology, Poland
Peng GAO – Northeastern University, Shenyang, China
Rafał GOŁĘBSKI – Czestochowa University of Technology, Poland
Andrzej GRZEBIELEC – Warsaw University of Technology, Poland
Ngoc San HA – Curtin University, Perth, Australia
Mehmet HASKUL – University of Sirnak, Turkey
Michal HATALA – Technical University of Košice, Slovak Republic
Dewey HODGES – Georgia Institute of Technology, Atlanta, United States
Hamed HONARI – Johns Hopkins University, Baltimore, United States
Olga IWASINSKA – Warsaw University of Technology, Poland
Emmanuelle JACQUET – University of Franche-Comté, Besançon, France
Maciej JAWORSKI – Warsaw University of Technology, Poland
Xiaoling JIN – Zhejiang University, Hangzhou, China
Halil Burak KAYBAL – Amasya University, Turkey
Vladis KOSSE – Queensland University of Technology, Brisbane, Australia
Krzysztof KUBRYŃSKI – Air Force Institute of Technology, Warsaw, Poland
Waldemar KUCZYŃSKI – Koszalin University of Technology, Poland
Igor KURYTNIK – State Higher School in Oswiecim, Poland
Daniel LESNIC – University of Leeds, United Kingdom
Witold LEWANDOWSKI – Gdańsk University of Technology, Poland
Guolu LI – Hebei University of Technology, Tianjin, China
Jun LI – Xi’an Jiaotong University, China
Baiquan LIN – China University of Mining and Technology, Xuzhou, China
Dawei LIU – Yanshan University, Qinhuangdao, China
Luis Norberto LÓPEZ DE LACALLE – University of the Basque Country, Bilbao, Spain
Ming LUO – Northwestern Polytechnical University, Xi’an, China
Xin MA – Shandong University, Jinan, China
Najmuldeen Yousif MAHMOOD – University of Technology, Baghdad, Iraq
Arun Kumar MAJUMDER – Indian Institute of Technology, Kharagpur, India
Paweł MALCZYK – Warsaw University of Technology, Poland
Miloš MATEJIĆ – University of Kragujevac, Serbia
Norkhairunnisa MAZLAN – Universiti Putra Malaysia, Serdang, Malaysia
Dariusz MAZURKIEWICZ – Lublin University of Technology, Poland
Florin MINGIREANU – Romanian Space Agency, Bucharest, Romania
Vladimir MITYUSHEV – Pedagogical University of Cracow, Poland
Adis MUMINOVIC – University of Sarajevo, Bosnia and Herzegovina
Baraka Olivier MUSHAGE – Université Libre des Pays des Grands Lacs, Goma, Congo (DRC)
Tomasz MUSZYŃSKI – Gdansk University of Technology, Poland
Mohamed NASR – National Research Centre, Giza, Egypt
Driss NEHARI – University of Ain Temouchent, Algeria
Oleksii NOSKO – Bialystok University of Technology, Poland
Grzegorz NOWAK – Silesian University of Technology, Gliwice, Poland
Iwona NOWAK – Silesian University of Technology, Gliwice, Poland
Samy ORABY – Pharos University in Alexandria, Egypt
Marcin PĘKAL – Warsaw University of Technology, Poland
Bo PENG – University of Huddersfield, United Kingdom
Janusz PIECHNA – Warsaw University of Technology, Poland
Maciej PIKULIŃSKI – Warsaw University of Technology, Poland
T.V.V.L.N. RAO – The LNM Institute of Information Technology, Jaipur, India
Andrzej RUSIN – Silesian University of Technology, Gliwice, Poland
Artur RUSOWICZ – Warsaw University of Technology, Poland
Benjamin SCHLEICH – Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
Jerzy SĘK – Lodz University of Technology, Poland
Reza SERAJIAN – University of California, Merced, USA
Artem SHAKLEIN – Udmurt Federal Research Center, Izhevsk, Russia
G.L. SHI – Guangxi University of Science and Technology, Liuzhou, China
Muhammad Faheem SIDDIQUI – Vrije University, Brussels, Belgium
Jarosław SMOCZEK – AGH University of Science and Technology, Cracow, Poland
Josip STJEPANDIC – PROSTEP AG, Darmstadt, Germany
Pavel A. STRIZHAK – Tomsk Polytechnic University, Russia
Vadym STUPNYTSKYY – Lviv Polytechnic National University, Ukraine
Miklós SZAKÁLL – Johannes Gutenberg-Universität Mainz, Germany
Agnieszka TOMASZEWSKA – Gdansk University of Technology, Poland
Artur TYLISZCZAK – Czestochowa University of Technology, Poland
Aneta USTRZYCKA – Institute of Fundamental Technological Research, Warsaw, Poland
Alper UYSAL – Yildiz Technical University, Turkey
Gabriel WĘCEL – Silesian University of Technology, Gliwice, Poland
Marek WĘGLOWSKI – Welding Institute, Gliwice, Poland
Frank WILL – Technische Universität Dresden, Germany
Michał WODTKE – Gdańsk University of Technology, Poland
Marek WOJTYRA – Warsaw University of Technology, Poland
Włodzimierz WRÓBLEWSKI – Silesian University of Technology, Gliwice, Poland
Hongtao WU – Nanjing University of Aeronautics and Astronautics, China
Jinyang XU – Shanghai Jiao Tong University, China
Zhiwu XU – Harbin Institute of Technology, China
Zbigniew ZAPAŁOWICZ – West Pomeranian University of Technology, Szczecin, Poland
Zdzislaw ZATORSKI – Polish Naval Academy, Gdynia, Poland
Wanming ZHAI – Southwest Jiaotong University, Chengdu, China
Xin ZHANG – Wenzhou University of Technology, China
Su ZHAO – Ningbo Institute of Materials Technology and Engineering, China

This page uses 'cookies'. Learn more