Applied sciences

Archive of Mechanical Engineering

Content

Archive of Mechanical Engineering | 2013 | vol. 60 | No 4 |

Download PDF Download RIS Download Bibtex

Abstract

This paper comprises description of the turbo engine and evaluation of its analytical model. The analytical model was created to establish a benchmark for further evaluation of a wave rotor combustor (at constant volume). The wave rotor combustor concept was presented and discussed. Advantages of combustion at constant volume were described as well as the basic turbo engine updates required to reflect pulse combustor application. The calculation results for analytical model of a basic engine, and that equipped with pulse combustor are included in this paper. The paper describes the required changes in the engine structure and construction and the estimated thermodynamic improvements. Axial-type pulse multi-chamber combustion unit increasing the pressure and temperature of gases requires a special additional turbine utilizing additional energy and forming the interface between the standard compressor-turbine unit. Performance calculations done for an existing GTD-350 engine showed that constant-volume combustion process is valuable.

Go to article

Authors and Affiliations

Damian Łapiński
Janusz Piechna
Download PDF Download RIS Download Bibtex

Abstract

A one-dimensional model based on the Fourier’s theory of heat conduction is developed for ring-like bodies. The ring-like body is an incomplete or complete torus with arbitrary cross section. The thermal properties of considered rings are independent of the polar angle. Examples illustrate the application of model presented.

Go to article

Authors and Affiliations

István Ecsedi
Attila Baksa
Download PDF Download RIS Download Bibtex

Abstract

A novel type of an axial, piston-driven high pressure hydraulic pump with variable capacity marks a significant improvement in the area of the hydraulic machinery design. Total discharge from hydrostatic forces eliminates a need for a servomechanism, thus simplifying operation, reducing weight and introducing the possibility of the pump displacement control by computer. PWK-type pumps, invented in the Gdansk University of Technology, offer high efficiency for pressure levels up to 55 MPa, ability to work self sucking even at high speed. However, the heart of the new invention, the commutation unit, creates harmful pressure peaks. Those peaks can be mitigated by the introduction of a compensation chamber with elastic walls. Owing to the dynamic character of events taking place in the pump, a need for computer simulation arouse in order to understand phenomena leading to the occurrence of pressure peaks and choose compensation chamber parameters accordingly. A CFD package alone would not be sufficient to reliably represent the interaction between the compensation chamber wall and the working fluid. This paper presents Fluid Structure Interaction approach comparing 3 different models: 2 simplified models of the pump and a full pump model.

Go to article

Authors and Affiliations

Leszek Osiecki
Piotr Patrosz
Bettina Landvogt
Janusz Piechna
Tomasz Zawistowski
Bartek Żyliński
Download PDF Download RIS Download Bibtex

Abstract

The aim of the work was modelling of shaft and calculation of natural vibration frequencies and critical rotations of a large-size, vertical mixed flow pump of total length l=4866 mm. Equations of motion were determined analytically, and then calculation results were verified by numerical modelling. The difficulty of the problem consisted in the shaft bearing, in which four hydrodynamic bearings of unknown parameters were applied. A four-mass beam supported on flexible supports of rigidity k and damping c was assumed as the discrete model of the shaft. Equations of motion for the system were derived with the method of forces. In order to verify correctness of the derived equations, one considered three models of the beam with different support configuration: the beam supported on rigid supports, the beam supported on elastic supports, and the beam supported on flexible supports of rigidity k and damping c. Calculation results are presented in tables and graphs.

Go to article

Authors and Affiliations

Henryk Holka
Tomasz Jarzyna
Download PDF Download RIS Download Bibtex

Abstract

In this work, the author presents experimental verification of numerical simulation of projectile impact on constructional shields. The experimental tests were performed at a unified test stand to investigate ballistic resistance of materials in field conditions. The stand was developed at the Polish Naval Academy in Gdynia, and then patented. The design of this test stand was based on construction of a ballistic pendulum, fitted to measure: impact force, turn angle of the ballistic pendulum χ, impact velocity and residual velocity of the projectile. All the measurement data were transmitted to a digital oscilloscope and a personal computer. The ballistic velocity of

the shield of VBL[R] – defined according to Recht’s and Ipson’s method, was compared with VBL[Z] and VBL[Z1] – determined according to the author’s method. Verification of numerically simulated ballistic velocity VRO versus the before-mentioned velocity

was carried out at the 10GHMBA-E620T steel shields impacted by 12.7 mm type B-32 projectiles. The introduced method can be used for determining ballistic thickness hBL and ballistic velocity VBL for both homogeneous plates as well as multi-layered constructional shields.

Go to article

Authors and Affiliations

Zdzisław Zatorski
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with mechanical and hardware design of a robot, used for the rehabilitation of upper extremities. It has been called ARR-1 (Arm Rehabilitation Robot). The robot has a semi-exoskeleton structure. This means that some parts of the robot fit closely to the human arm (an orthosis), but the weight of the construction does not load patient’s body. The device is used for the whole arm rehabilitation, but active joints are only situated in glenohumeral and elbow joints. The robot is electrically actuated.

Go to article

Authors and Affiliations

Artur Gmerek
Download PDF Download RIS Download Bibtex

Abstract

The issues of medical robots have been approached for 12 years in the Institute of Machine Tools and Production Engineering of the Technical University of Lodz. In the last two years, the scope of research related to the miniaturization of surgical tools, automated changing of these tools with the use of a tool depot designed for this purpose, equipping the robot in the sense of touch and developing the software which provides ergonomic and intuitive robot control with the use of all its functions. In the telemanipulator control, strong emphasis is placed on the intuitiveness of control, which is hard to be ensured due to the fact that the robot tool is observed by a laparoscopic camera, whose orientation and position may vary. That is the reason for developing a new algorithm. It copies the increments of the position and orientation measured in relation to the monitor coordinate system onto the robot tool movement and orientation, which are measured in relation to the camera coordinates system. In this algorithm it is necessary to solve inverse kinematics, which has a discontinuity. Avoiding the discontinuity is achieved by mapping the solution with the cosine function. It causes smooth pass through the area of discontinuity in this way avoiding the singularity.

Go to article

Authors and Affiliations

Adam Niewola
Leszek Podsędkowski
Piotr Wróblewski
Piotr Zawiasa
Marcin Zawierucha

Instructions for authors

About the Journal
Archive of Mechanical Engineering is an international journal publishing works of wide significance, originality and relevance in most branches of mechanical engineering. The journal is peer-reviewed and is published both in electronic and printed form. Archive of Mechanical Engineering publishes original papers which have not been previously published in other journal, and are not being prepared for publication elsewhere. The publisher will not be held legally responsible should there be any claims for compensation. The journal accepts papers in English.

Archive of Mechanical Engineering is an Open Access journal. The journal does not have article processing charges (APCs) nor article submission charges.

Original high quality papers on the following topics are preferred:

  • Mechanics of Solids and Structures,
  • Fluid Dynamics,
  • Thermodynamics, Heat Transfer and Combustion,
  • Machine Design,
  • Computational Methods in Mechanical Engineering,
  • Robotics, Automation and Control,
  • Mechatronics and Micro-mechanical Systems,
  • Aeronautics and Aerospace Engineering,
  • Heat and Power Engineering.

All submissions to the AME should be made electronically via Editorial System - an online submission and peer review system at: https://www.editorialsystem.com/ame

More detailed instructions for Authors can be found there.

Reviewers

The Editorial Board of the Archive of Mechanical Engineering (AME) sincerely expresses gratitude to the following individuals who devoted their time to review papers submitted to the journal. Particularly, we express our gratitude to those who reviewed papers several times.

List of reviewers of volume 68 (2021)

Ahmad ABDALLA – Huaiyin Institute of Technology, China
Sara ABDELSALAM – University of California, Riverside, United States
Muhammad Ilman Hakimi Chua ABDULLAH – Universiti Teknikal Malaysia Melaka, Malaysia
Hafiz Malik Naqash AFZAL – University of New South Wales, Sydney, Australia
Reza ANSARI – University of Guilan, Rasht, Iran
Jeewan C. ATWAL – Indian Institute of Technology Delhi, New Delhi, India
Hadi BABAEI – Islamic Azad University, Tehran, Iran
Sakthi BALAN – K. Ramakrishnan college of Engineering, Trichy, India
Leszek BARANOWSKI – Military University of Technology, Warsaw, Poland
Elias BRASSITOS – Lebanese American University, Byblos, Lebanon
Tadeusz BURCZYŃSKI – Institute of Fundamental Technological Research, Warsaw, Poland
Nguyen Duy CHINH – Hung Yen University of Technology and Education, Hung Yen, Vietnam
Dorota CHWIEDUK – Warsaw University of Technology, Poland
Adam CISZKIEWICZ – Cracow University of Technology, Poland
Meera CS – University of Petroleum and Energy Studies, Duhradun, India
Piotr CYKLIS – Cracow University of Technology, Poland
Abanti DATTA – Indian Institute of Engineering Science and Technology, Shibpur, India
Piotr DEUSZKIEWICZ – Warsaw University of Technology, Poland
Dinesh DHANDE – AISSMS College of Engineering, Pune, India
Sufen DONG – Dalian University of Technology, China
N. Godwin Raja EBENEZER – Loyola-ICAM College of Engineering and Technology, Chennai, India
Halina EGNER – Cracow University of Technology, Poland
Fehim FINDIK – Sakarya University of Applied Sciences, Turkey
Artur GANCZARSKI – Cracow University of Technology, Poland
Peng GAO – Northeastern University, Shenyang, China
Rafał GOŁĘBSKI – Czestochowa University of Technology, Poland
Andrzej GRZEBIELEC – Warsaw University of Technology, Poland
Ngoc San HA – Curtin University, Perth, Australia
Mehmet HASKUL – University of Sirnak, Turkey
Michal HATALA – Technical University of Košice, Slovak Republic
Dewey HODGES – Georgia Institute of Technology, Atlanta, United States
Hamed HONARI – Johns Hopkins University, Baltimore, United States
Olga IWASINSKA – Warsaw University of Technology, Poland
Emmanuelle JACQUET – University of Franche-Comté, Besançon, France
Maciej JAWORSKI – Warsaw University of Technology, Poland
Xiaoling JIN – Zhejiang University, Hangzhou, China
Halil Burak KAYBAL – Amasya University, Turkey
Vladis KOSSE – Queensland University of Technology, Brisbane, Australia
Krzysztof KUBRYŃSKI – Air Force Institute of Technology, Warsaw, Poland
Waldemar KUCZYŃSKI – Koszalin University of Technology, Poland
Igor KURYTNIK – State Higher School in Oswiecim, Poland
Daniel LESNIC – University of Leeds, United Kingdom
Witold LEWANDOWSKI – Gdańsk University of Technology, Poland
Guolu LI – Hebei University of Technology, Tianjin, China
Jun LI – Xi’an Jiaotong University, China
Baiquan LIN – China University of Mining and Technology, Xuzhou, China
Dawei LIU – Yanshan University, Qinhuangdao, China
Luis Norberto LÓPEZ DE LACALLE – University of the Basque Country, Bilbao, Spain
Ming LUO – Northwestern Polytechnical University, Xi’an, China
Xin MA – Shandong University, Jinan, China
Najmuldeen Yousif MAHMOOD – University of Technology, Baghdad, Iraq
Arun Kumar MAJUMDER – Indian Institute of Technology, Kharagpur, India
Paweł MALCZYK – Warsaw University of Technology, Poland
Miloš MATEJIĆ – University of Kragujevac, Serbia
Norkhairunnisa MAZLAN – Universiti Putra Malaysia, Serdang, Malaysia
Dariusz MAZURKIEWICZ – Lublin University of Technology, Poland
Florin MINGIREANU – Romanian Space Agency, Bucharest, Romania
Vladimir MITYUSHEV – Pedagogical University of Cracow, Poland
Adis MUMINOVIC – University of Sarajevo, Bosnia and Herzegovina
Baraka Olivier MUSHAGE – Université Libre des Pays des Grands Lacs, Goma, Congo (DRC)
Tomasz MUSZYŃSKI – Gdansk University of Technology, Poland
Mohamed NASR – National Research Centre, Giza, Egypt
Driss NEHARI – University of Ain Temouchent, Algeria
Oleksii NOSKO – Bialystok University of Technology, Poland
Grzegorz NOWAK – Silesian University of Technology, Gliwice, Poland
Iwona NOWAK – Silesian University of Technology, Gliwice, Poland
Samy ORABY – Pharos University in Alexandria, Egypt
Marcin PĘKAL – Warsaw University of Technology, Poland
Bo PENG – University of Huddersfield, United Kingdom
Janusz PIECHNA – Warsaw University of Technology, Poland
Maciej PIKULIŃSKI – Warsaw University of Technology, Poland
T.V.V.L.N. RAO – The LNM Institute of Information Technology, Jaipur, India
Andrzej RUSIN – Silesian University of Technology, Gliwice, Poland
Artur RUSOWICZ – Warsaw University of Technology, Poland
Benjamin SCHLEICH – Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
Jerzy SĘK – Lodz University of Technology, Poland
Reza SERAJIAN – University of California, Merced, USA
Artem SHAKLEIN – Udmurt Federal Research Center, Izhevsk, Russia
G.L. SHI – Guangxi University of Science and Technology, Liuzhou, China
Muhammad Faheem SIDDIQUI – Vrije University, Brussels, Belgium
Jarosław SMOCZEK – AGH University of Science and Technology, Cracow, Poland
Josip STJEPANDIC – PROSTEP AG, Darmstadt, Germany
Pavel A. STRIZHAK – Tomsk Polytechnic University, Russia
Vadym STUPNYTSKYY – Lviv Polytechnic National University, Ukraine
Miklós SZAKÁLL – Johannes Gutenberg-Universität Mainz, Germany
Agnieszka TOMASZEWSKA – Gdansk University of Technology, Poland
Artur TYLISZCZAK – Czestochowa University of Technology, Poland
Aneta USTRZYCKA – Institute of Fundamental Technological Research, Warsaw, Poland
Alper UYSAL – Yildiz Technical University, Turkey
Gabriel WĘCEL – Silesian University of Technology, Gliwice, Poland
Marek WĘGLOWSKI – Welding Institute, Gliwice, Poland
Frank WILL – Technische Universität Dresden, Germany
Michał WODTKE – Gdańsk University of Technology, Poland
Marek WOJTYRA – Warsaw University of Technology, Poland
Włodzimierz WRÓBLEWSKI – Silesian University of Technology, Gliwice, Poland
Hongtao WU – Nanjing University of Aeronautics and Astronautics, China
Jinyang XU – Shanghai Jiao Tong University, China
Zhiwu XU – Harbin Institute of Technology, China
Zbigniew ZAPAŁOWICZ – West Pomeranian University of Technology, Szczecin, Poland
Zdzislaw ZATORSKI – Polish Naval Academy, Gdynia, Poland
Wanming ZHAI – Southwest Jiaotong University, Chengdu, China
Xin ZHANG – Wenzhou University of Technology, China
Su ZHAO – Ningbo Institute of Materials Technology and Engineering, China

This page uses 'cookies'. Learn more