Nauki Techniczne

Archives of Environmental Protection

Zawartość

Archives of Environmental Protection | 2023 | vol. 49 | No 1

Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Many countries, including Indonesia, face severe water scarcity and groundwater depletion. Monitoring and evaluation of water resources need to be done. In addition, it is also necessary to improve the method of calculating water, which was initially based on a biophysical approach, replaced by a socio-ecological approach. Water yields were estimated using the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model. The Ordinary Least Square (OLS) and geographic weighted regression (GWR) methods were used to identify and analyze socio-ecological variables for changes in water yields. The purpose of this study was: (1) to analyze the spatial and temporal changes in water yield from 2000 to 2018 in the Citarum River Basin Unit (Citarum RBU) using the InVEST model, and (2) to identify socio-ecological variables as driving factors for changes in water yields using the OLS and GWR methods. The findings revealed the overall annual water yield decreased from 16.64 billion m3 year-1 in the year 2000 to 12.16 billion m3 year-1 in 2018; it was about 4.48 billion m3 (26.91%). The socio-ecological variables in water yields in the Citarum RBU show that climate and socio-economic characteristics contributed 6% and 44%, respectively. Land use/Land cover (LU/LC) and land configuration contribution fell by 20% and 40%, respectively.The main factors underlying the recent changes in water yields include average rainfall, pure dry agriculture, and bare land at 28.53%, 27.73%, and 15.08% for the biophysical model, while 30.28%, 23.77%, and 10.24% for the socio-ecological model, respectively. However, the social-ecological model demonstrated an increase in the contribution rate of climate and socio-economic factors and vice versa for the land use and landscape contribution rate. This circumstance demonstrates that the socio-ecological model is more comprehensive than the biophysical one for evaluating water scarcity.
Przejdź do artykułu

Bibliografia

  1. Ambarwulan, W., Nahib, I., Widiatmaka, W., Suryanta, J., Munajati, S. L., Suwarno, Y., Turmudi T, Darmawan M. & Sutrisno, D. (2021). Using Geographic Information Systems and the Analytical Hierarchy Process for Delineating Erosion-Induced Land Degradation in the Middle Citarum Sub-Watershed, Indonesia. Frontiers in Environmental Science, 9, 710570. DOI:10.3389/fenvs.2021.71057
  2. Badan Informasi Geospasial. (2015). Pemetaan Dinamika Sumberdaya Alam Terpadu Wilayah Sungai Citarum; [Mapping of the Dynamics of Integrated Natural Resources of the Citarum River Basin]; Cibinong.
  3. Bai, Y., Chen, Y., Alatalo, J.M., Yang, Z. & Jiang, B. (2020). Scale Effects on the Relationships between Land Characteristics and Ecosystem Services- a Case Study in Taihu Lake Basin, China. Sci. Total Environ., 716, DOI:10.1016/j.scitotenv.2020.137083
  4. Balai Besar Wilayah Sungai Citarum-Ciliwung (BBWS Citarum Ciliwung). Profil BBWS Citarum [Profile of BBWS Citarum]. (http://sda.pu.go.id/balai/bbwscitarum/profil-bbws-citarum/) (09.03. 2022)
  5. Balist, J., Malekmohammadi, B., Jafari, H. R., Nohegar, A. & Geneletti, D. (2022). Detecting land use and climate impacts on water yield ecosystem service in arid and semi-arid areas. A study in Sirvan River Basin-Iran. Applied Water Science, 12(1), pp. 1-14. DOI:10.1007/s13201-021-01545-8
  6. Barbieri, M., Barberio, M. D., Banzato, F., Billi, A., Boschetti, T., Franchini, S. & Petitta, M. (2021). Climate change and its effect on groundwater quality. Environmental Geochemistry and Health, 1-12. DOI:10.1007/s10653-021-01140-5
  7. Bin, L., Xu, K., Xu, X., Lian, J. & Ma, C. (2018). Development of a Landscape Indicator to Evaluate the Effect of Landscape Pattern on Surface Runoff in the Haihe River Basin. J. Hydrol, 566, pp. 546–557. DOI:10.1016/j.jhydrol.2018.09.045
  8. Borowski, P. F. (2020). Nexus between water, energy, food and climate change as challenges facing the modern global, European and Polish economy. AIMS Geosci, 6, pp. 397-421. DOI:10.3934/geosci.2020022
  9. Bucała-Hrabia, A. (2018). Land use changes and their catchment-scale environmenta limpact in the Polish Western Carpathians during transition from centrally planned to free-market economics. Geographia Polonica, 91(2), pp. 171-196. DOI:10.24425/aep.2022.140767
  10. Cao, S., Chen, L. & Yu, X. (2009). Impact of China's Grain for Green Project on the landscape of vulnerable arid and semi‐arid agricultural regions: A case study in northern Shaanxi Province. Journal of Applied Ecology, 46(3), pp. 536-543.
  11. Caraka, R. E., Chen, R. C., Bakar, S. A., Tahmid, M., Toharudin, T., Pardamean, B. & Huang, S. W. (2020). Employing best input SVR robust lost function with nature-inspired metaheuristics in wind speed energy forecasting. IAENG Int. J. Comput. Sci, 47(3), pp. 572-584.
  12. Chander, G., Markham, B. L. & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote sensing of environment, 113(5), pp. 893-903.
  13. Deslatte, A., Szmigiel-Rawska, K., Tavares, A. F., Ślawska, J., Karsznia, I. & Łukomska, J. (2022). Land use institutions and social-ecological systems: A spatial analysis of local landscape changes in Poland. Land Use Policy, 114, 105937. DOI:10.1016/j.landusepol.2021.105937
  14. Dinka, M. O. & Chaka, D. D. (2019). Analysis of land use/land cover change in Adei watershed, Central Highlands of Ethiopia. Journal of water and land development. DOI:10.2478/jwld-2019-0038
  15. Dissanayake, D., Morimoto, T. & Ranagalage, M. (2019). Accessing the Soil Erosion Rate Based on RUSLE Model for Sustainable Land Use Management: A Case Study of the Kotmale Watershed, Sri Lanka. Springer International Publishing; Vol. 5, pp. 291–306. DOI:10.1007/s40808-018-0534-x
  16. Ermida, S.L., Patrícia Soares, Vasco Mantas, Frank-M. Göttsche & Isabel F. Trigo. (2020). Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series. Remote Sens. 12, 1471. DOI:10.3390/rs12091471
  17. Fang, W., Huang, H., Yang, B. & Hu, Q. (2021). Factors on spatial heterogeneity of the grain production capacity in the major grain sales area in southeast China: Evidence from 530 Counties in Guangdong Province. Land, 10(2), 206. DOI:10.3390/land10020206
  18. Ferencz, B., Dawidek, J., & Bronowicka-Mielniczuk, U. (2022). Alteration of yield and springs number as an indicator of climate changes. Case study of Eastern Poland. Ecological Indicators, 138, 108798.
  19. Figueroa, A.J. & Smilovic, M. (2020). Groundwater irrigation and implication in the Nile river basin. In Global Groundwater (pp. 81-95). Elsevier. DOI:10.1016/B978-0-12-818172-0.00007-4
  20. Fotheringham, A.S., Brunsdon, C. & Charlton, M. (2002). Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; ISBN 978-0-470-85525-6.
  21. Francis, R. & Bekera, B. (2014). A metric and frameworks for resilience analysis of engineered and infrastructure systems. Reliability engineering & system safety, 121, pp. 90-103.
  22. Fu, B.P. (1981). On the Calculation of the Evaporation from Land Surface. Sci. Atmos. Sin.
  23. Gentilucci, M., Bufalini, M., Materazzi, M., Barbieri, M., Aringoli, D., Farabollini, P. & Pambianchi, G. (2021). Calculation of Potential Evapotranspiration and Calibration of the Hargreaves Equation Using Geostatistical Methods over the Last 10 Years in Central Italy. Geosci, 11, DOI:10.3390/geosciences11080348
  24. Glaser, M., Krause, G., Ratter, B. & Welp, M. (2008) Human-Nature-Interaction in the Anthropocene. Potential of Social-Ecological Systems Analysis. [Website], Available from: file:///C:/Users/USER/Downloads/10.4324_9780203123195_previewpdf.pdf
  25. (28.07.2022) DOI:10.1111/j.1365-2664.2008.01605.x
  26. Goldameir, N. E., Djuraidah, A. & Wigena, A. H. (2015). Quantile Spline Regression on Statistical Downscaling Model to Predict Extreme Rainfall in Indramayu. Applied Mathematical Sciences, 9(126), pp. 6263-6272.
  27. Gollini, I., Lu, B., Charlton, M., Brunsdon, C., Harris, P., Gollini, I., Lu, B., Charlton, M., Brunsdon, C. & Harris, P. (2015). GWmodel : An R Package for Exploring Spatial Heterogeneity. J. Stat. Softw, 63, pp. 1–50, DOI:10.1080/10095020.2014.917453
  28. Gosal, A. S., Evans, P. M., Bullock, J. M., Redhead, J., Charlton, M. B., Cord, A. F. Johnson, A. & Ziv, G. (2022). Understanding the accuracy of modelled changes in freshwater provision over time. Science of the Total Environment, 833, 155042. DOI:10.1016/j.scitotenv.2022.155042
  29. Gwate, O., Dube, H., Sibanda, M., Dube, T., Chisadza, B. & Nyikadzino, B. (2022). Understanding the influence of land cover change and landscape pattern change on evapotranspiration variations in Gwayi catchment of Zimbabwe. Geocarto International, 1-17. DOI:10.1080/10106049.2022.2032386
  30. Hamel, P. & Guswa, A.J. (2015). Uncertainty Analysis of a Spatially Explicit Annual Water-Balance Model: Case Study of the Cape Fear Basin, North Carolina. Hydrol. Earth Syst. Sci, 19, pp. 839–853. DOI:10.5194/hess-19-839-2015
  31. Horton, R. E. (1933). The role of infiltration in the hydrologic cycle. Eos. Transactions American Geophysical Union, 14(1), pp. 446-460.
  32. Hasan, M. (2011). A policy model for sustainable water resources management of Citarum River Basin. Disertasi. Sekolahg pasca Sarjana IPb. http://repository.ipb.ac.id/handle/123456789/53626
  33. Hu, W., Li, G., Gao, Z., Jia, G., Wang, Z. & Li, Y. (2020). Assessment of the impact of the Poplar Ecological Retreat Project on water conservation in the Dongting Lake wetland region using the InVEST model. Science of the Total Environment, 733, 139423. DOI:10.1016/j.scitotenv.2020.139423
  34. Kementerian Pekerjaan Umum. Rencana pengelolaan sumber daya air Wilayah Sungai Citarum Tahun 2016 [Management Plan of Citarum River Basin]. Available online: https://www.coursehero.com/file/60545948/Rencana-Pengelolaan-Sumber-Daya-Air-WS-Citarumpdf/ (12.03.2022).
  35. Kubiak-Wójcicka, K. & Machula, S. (2020). Influence of climate changes on the state of water resources in Poland and their usage. Geosciences, 10(8), 312. DOI:10.3390/geosciences10080312
  36. Łabędzki, L. & Bąk, B. (2017). Impact of meteorological drought on crop water deficit and crop yield reduction in Polish agriculture. Journal of Water and Land Development, 34(1), 181. DOI: 10.1515/jwld-2017-0052
  37. Li, P., Li, H., Yang, G., Zhang, Q. & Diao, Y. (2018). Assessing the hydrologic impacts of land use change in the Taihu Lake Basin of China from 1985 to 2010. Water, 10(11), 1512. DOI:10.3390/w10111512
  38. Li, Y., Sun, Y., Li, J. & Gao, C. (2020). Socioeconomic drivers of urban heat island effect: Empirical evidence from major Chinese cities. Sustainable Cities and Society, 63, 102425. DOI: 10.1016/j.scs.2020.102425
  39. Lian, X. H., Qi, Y., Wang, H. W., Zhang, J. L. & Yang, R. (2019). Assessing changes of water yield in Qinghai Lake Watershed of China. Water, 12(1), 11. DOI: 10.3390/w12010011
  40. Montazar, A., Krueger, R., Corwin, D., Pourreza, A., Little, C., Rios, S. & Snyder, R.L. (2020). Determination of Actual Evapotranspiration and Crop Coefficients of California Date Palms Using the Residual of Energy Balance Approach. Water (Switzerland), 12, DOI:10.3390/w12082253
  41. Muhammed, H. H., Mustafa, A. M. & Kolerski, T. (2021). Hydrological responses to large-scale changes in land cover of river watershed. Journal of Water and Land Development, (50). DOI:10.24425/jwld.2021.138166
  42. Nahib, I., Ambarwulan, W., Rahadiati, A., Munajati, S.L., Prihanto, Y., Suryanta, J., Turmudi, T. Nuswantoro, A.C (2021). Assessment of the Impacts of Climate and LULC Changes on the Water Yield in the Citarum River Basin, West Java Province, Indonesia. Sustain. 13, DOI:10.3390/su13073919
  43. Nahib, I., Amhar, F., Wahyudin, Y., Ambarwulan, W., Suwarno, Y., Suwedi, N., Turmudi T, Cahyana. D., Nugroho, N.P.,Ramadhani, F., Siagian, D.R., Suryanta, J., Rudiastuti. A.W., Lumban-Gaol, Y., Karolinoerita, V., Rifaie. F. & Munawaroh, M. (2023). Spatial-Temporal Changes in Water Supply and Demand in the Citarum Watershed, West Java, Indonesia Using a Geospatial Approach. Sustainability, 15(1), 562. DOI:10.3390/su15010562
  44. Nie, Y., Avraamidou, S., Xiao, X., Pistikopoulos, E. N., Li, J., Zeng, Y. Song, F. Yu, J. & Zhu, M. (2019). A Food-Energy-Water Nexus approach for land use optimization. Science of The Total Environment, 659, pp.7-19. DOI: 10.1016/j.scitotenv.2018.12.242
  45. Pei, H., Liu, M., Shen, Y., Xu, K., Zhang, H., Li, Y. & Luo, J. (2022). Quantifying impacts of climate dynamics and land-use changes on water yield service in the agro-pastoral ecotone of northern China. Science of The Total Environment, 809, p.151153. DOI:10.1016/j.scitotenv.2021.151153
  46. Pokhrel, Y. N., Koirala, S., Yeh, P. J. F., Hanasaki, N., Longuevergne, L., Kanae, S. & Oki, T. (2015). Incorporation of groundwater pumping in a global L and Surface Model with the representation of human impacts. Water Resources Research, 51(1), pp. 78-96. DOI:10.1002/2014WR015602
  47. Redhead, J. W., Stratford, C., Sharps, K., Jones, L., Ziv, G., Clarke, D., Oliver, T.H. & Bullock, J. M. (2016). Empirical validation of the InVEST water yield ecosystem service model at a national scale. Science of the Total Environment, 569, pp. 1418-1426. DOI:10.1016/j.scitotenv.2016.06.227
  48. Rouholahnejad Freund, E., Abbaspour, K. C. & Lehmann, A. (2017). Water resources of the Black Sea catchment under future climate and landuse change projections. Water, 9(8), 598.
  49. Sawicka, B., Barbaś, P., Pszczółkowski, P., Skiba, D., Yeganehpoor, F. & Krochmal-Marczak, B. (2022). Climate Changes in Southeastern Poland and Food Security. Climate, 10(4), 57. DOI:10.3390/cli10040057
  50. Saxton, K.E. (2009) Soil Water Characteristics: Hydraulic Properties Calculator. Available online: https://hrsl.ba.ars.usda.gov/soilwater/Index.htm (13.02.2022)
  51. Scown, M. W., Flotemersch, J. E., Spanbauer, T. L., Eason, T., Garmestani, A. & Chaffin, B. C. (2017). People and water: Exploring the social-ecological condition of watersheds of the United States. Elementa: Science of the Anthropocene, 5. DOI:10.1525/elementa.189
  52. Septiangga, B. & Juniar, R. 2016. Aplikasi citra Landsat 8 untuk penentuan persebaran titik panas sebagai indikasi peningkatan temperatur Kota Yogyakarta. Conference paper on National Meteorologi and Climatologi, Jakarta, Indonesia, March 2016
  53. Sharp, R., Tallis, H.T., Ricketts, T., Guerry, A.D., Wood, S.A., Chaplin-Kramer, R. & Bierbower, W. (2015). INVEST 3.1.3 User’s Guide; California US, https://invest-userguide.readthedocs.io/en/3.5.0/ (12.08.2021)
  54. Sholeh, M., Pranoto, P., Budiastuti, S. & Sutarno, S. (2018). Analysis of Citarum River Pollution Indicator Using Chemical, Physical, and Bacteriological Methods; Vol. 2049;. In AIP Conference Proceedings (Vol. 2049, No. 1, p. 020068). AIP Publishing LLC. DOI:10.1063/1.5082473
  55. Siswanto, S.Y. & Francés, F. (2019). How Land Use/Land Cover Changes Can Affect Water, Flooding and Sedimentation in a Tropical Watershed: A Case Study Using Distributed Modeling in the Upper Citarum Watershed, Indonesia. Environ. Earth Sci. 78, pp. 1–15. DOI:10.1007/s12665-019-8561-0
  56. Sriyanti, M. G. Indonesia Climate Change Sectoral Roadmap-ICCSR (Synthesis Report). FAO. 2009. 9789793764498. Jakarta: Badan Perencanaan Pembangunan Nasional, 2010
  57. Sun, Y.-J. Wang, J.-F., Zhang, R.-H., Gillies, R. R., Xue, Y. & Bo. Y.-C.(2015). Air temperature retrieval from remote sensing data based on thermodynamics. Theoretical and Applied Climatology. 80, pp. 37–48. DOI:10.1007/s00704-004-0079-y
  58. Sun, X.Y., Guo, H.W., Lian, L., Liu, F. & Li, B. (2017). The Spatial Pattern of Water Yield and Its Driving Factors in Nansi Lake Basin. J. Nat. Resour, 32, pp. 669–679. DOI:10.11849/zrzyxb.20160460
  59. Suroso, D., Setiawan, B. & Abdurahman, O. (2010). Impact of Climate Change on the Sustainability of Water Supply in Indonesia and The 714 Proposed Adaptation Activities. Int. Symp. Exhib. Short Course Geotech. Geosynth. Eng. Challenges Oppor. Clim. Chang. 2010
  60. Szarek-Gwiazda, E. & Gwiazda, R. (2022). Impact of flow and damming on water quality of the mountain Raba River (southern Poland)‒long-term studies. Archives of Environmental Protection, 48(1), pp. 31-40. DOI:10.24425/aep.2022.140543
  61. Szwagrzyk, M., Kaim, D., Price, B., Wypych, A., Grabska, E. & Kozak, J. (2018). Impact of forecasted land use changes on flood risk in the Polish Carpathians. Natural Hazards, 94(1), pp. 227-240. DOI:10.1007/s11069-018-3384-y
  62. Szwed, M., Karg, G., Pińskwar, I., Radziejewski, M., Graczyk, D., Kędziora, A. & Kundzewicz, Z. W. (2010). Climate change and its effect on agriculture, water resources and human health sectors in Poland. Natural Hazards and Earth System Sciences, 10(8), pp. 1725-1737. DOI:10.5194/nhess-10-1725-2010, 2010.
  63. Van Paddenburg, A., Bassi, A., Buter, E., Cosslett, C. & Dean, A. A. (2012). Heart of Borneo: Investing in Nature for a Green Economy: A Synthesis Report;
  64. Wang, C., Du, S., Wen, J., Zhang, M., Gu, H., Shi, Y. & Xu, H. (2017). Analyzing Explanatory Factors of Urban Pluvial Floods in Shanghai Using Geographically Weighted Regression. Stoch. Environ. Res. Risk Assess, 31, DOI:10.1007/s00477-016-1242-6 Water 2020, 12, 11.
  65. Wei, P., Chen, S., Wu, M., Deng, Y., Xu, H., Jia, Y. & Liu, F. (2021). Using the Invest Model to Assess the Impacts of Climate and Land Use Changes on Water Yield in the Upstream Regions of the Shule River Basin. Water (Switzerland), 13. DOI:10.3390/w13091250
  66. Worldmeter. Indonesia Water https://www.worldometers.info/water/indonesia-water/#water-use (26.05.2022)
  67. WWAP (World Water Assessment Programme). 2021. World Water Development Report Volume 4: Managing Water under Uncertainty and Risk; 2012; Vol. 1.
  68. Xu, J., Liu, S., Zhao, S., Wu, X., Hou, X., An, Y. & Shen, Z. (2019). Spatiotemporal dynamics of water yield service and its response to urbanisation in the Beiyun river Basin, Beijing. Sustainability, 11(16), 4361.
  69. Yang, C., Fu, M., Feng, D., Sun, Y. & Zhai, G. (2021). Spatiotemporal Changes in Vegetation Cover and Its Influencing Factors in the Loess Plateau of China Based on the Geographically Weighted Regression Model. Forests, 12. DOI:10.3390/f12060673
  70. Yang, X., Chen, R., Meadows, M.E., Ji, G. & Xu, J. (2020). Modelling Water Yield with the InVEST Model in a Data Scarce Region of Northwest China. Water Sci. Technol. Water Supply, 20, pp. 1035–1045, DOI:10.2166/ws.2020.026
  71. Young, M. & Esau, C. (Eds.). (2015). Investing in water for a green economy: Services, infrastructure, policies and management. Routledge.
  72. Yudistiro, Kusratmoko, E. & Semedi, J.M. (2019). Water Availability in Patuha Mountain Region Using InVEST Model “Hydropower Water Yield.” In Proceedings of the E3S Web of Conferences; Vol. 125. DOI:10.1051/e3sconf/2019125010
  73. Zhang, L., Hickel, K., Dawes, W.R., Chiew, F.H.S., Western, A.W. & Briggs, P.R. (2004). A Rational Function Approach for Estimating Mean Annual Evapotranspiration. Water Resour. Res, 40, pp. 1–14, DOI:10.1029/2003WR002710
  74. Zhang, X., Zhang, G., Long, X., Zhang, Q., Liu, D., Wu, H. & Li, S. (2021). Identifying the Drivers of Water Yield Ecosystem Service: A Case Study in the Yangtze River Basin, China. Ecol. Indic, 132. DOI:10.1016/j.ecolind.2021.108304
  75. Zemełka, G., Kryłów, M. & Szalińska van Overdijk, E. (2019). The potential impact of land use changes on heavy metal contamination in the drinking water reservoir catchment (Dobczyce Reservoir, south Poland). Archives of Environmental Protection, 45(2), pp.3-11. DOI:10.24425/aep.2019.127975 ;
  76. Ziexin, H. (2020). Impact of spatial land use change on green space and water yield in Batu Pahat, Johor (Doctoral dissertation, Universiti Malaysia Kelantan).
Przejdź do artykułu

Autorzy i Afiliacje

Irmadi Nahib
1
ORCID: ORCID
Wiwin Ambarwulan
1
ORCID: ORCID
Dewayany Sutrisno
1
ORCID: ORCID
Mulyanto Darmawan
1
Yatin Suwarno
1
Ati Rahadiati
1
Jaka Suryanta
1
Yosef Prihanto
1
Aninda W. Rudiastuti
1
Yustisi Lumban Gaol
1

  1. Research Center for Geospatial, Research Organization for Earth Sciences and Maritime,National Research and Innovation Agency, Cibinong Science Center,Jl. Raya Jakarta-Bogor Km 46, Cibinong 16911, Indonesia
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Ecotoxicological biotests were applied in order to evaluate their suitability as early warning systems in the continuous monitoring of lowland shallow dam reservoirs located in Central Europe. The following biotests were used: Daphtoxkit F™magna, Algaltoxkit F™, Ostracodtoxkit F, Phytotoxkit and MARA Test. The experiment was conducted from July 2010 to December 2012 in Goczalkowice Reservoir (the Vistula River, Poland), serving as a model. For the analysis, 41 out of 52 measured water indices were used to assess its toxicity to living organisms. The results of biotests were correlated with 41 hydrochemical indices of water quality. The pattern of relationships among the result of biotest and hydrochemical indices as well as Factor Analysis (FA) and Primary Component Analysis (PCA) revealed that: i) signs of ecotoxicity detected with biotests were associated with either low fl ow periods or spring surface runoff of water; ii) single events of increased ecotoxicity in the depression areas behind saddle dam pump stations appearedafter high fl ow periods; iii) elevated toxicity was accompanied by high concentrations of dissolved and suspended substances; iv) FA and PCA demonstrated correlations among the results of biotests and damming parameters, water conductivity, alkali and transitory metal metals (Ca, Fe, Cu, Zn), and several forms of nitrogen phosphorous and carbon compounds concentration. The relationships suggest that batteries of biotests may serve as a cost-eff ective tool for continuous monitoring of water quality in dam reservoirs and can detect eff ects of extreme hydrologic events, local toxic discharges, and signs of the trophic status of the reservoirs
Przejdź do artykułu

Bibliografia

  1. Baran, A. & Tarnawski, M. (2013). Phytotoxkit/Phytotestkit and Microtox® as tools for toxicity assessment of sediments. Ecotoxicology and Environmental Safety, 98, pp. 19–27.
  2. Baudo, R., Sbalchiero, A. & Beltrami, M. (2004). Test di Tossicita acuta con Daphnia magna (Acute toxicity test with Daphnia magna). Biologi Italiani, 6, pp. 62–69.
  3. Blaise, C., Gagné. F., Chèvre, N., Harwood, M., Lee, K., Lappalainen, J., Chial, B., Persoone, G. & Doe, K. (2004). Toxicity assessment of oil-contaminated freshwater sediments. Environmental Toxicology, 19, 4, pp. 267–273.
  4. Blaise, C. & Férard, J-F. (2006). Microbiotests in aquatic toxicology: the way forward. [in:] Environmental Toxicology, Kungolos, A., Brebbia, C.A., Samaras, C.P. & Popov, V. (Eds.). UK WIT Press, Southampton, pp. 339–348.
  5. Calabrese, E.J. (2004). Hormesis: A revolution in toxicology, risk assessment and medicine. EMBO Reports, 5, Suppl 1, pp. S37–S40.
  6. CAS Registry. (2022). CAS REGISTRY®. A division of the American Chemical Society. (https://www.cas.org/cas-data/cas-registry (14.07.2022))
  7. Chial, B.Z., Persoone, G. & Blaise, C. (2003). Cyst-based toxicity tests. XVIII. Application of ostracodtoxkit microbiotest in a bioremediation project of oil-contaminated sediments: sensitivity comparison with Hyalella azteca solid-phase assay. Environmental Toxicology, 18, 5, pp. 279–283.
  8. Cloete, Y.C., Shaddock, B.F. & Nel, A. (2017). The use of two microbiotests to evaluate the toxicity of sediment from Mpumalanga, South Africa. Water SA, 43, pp. 409–412. DOI:10.4314/wsa.v43i3.05
  9. Czerniawska-Kusza, I., Ciesielczuk, T., Kusza, G. & Cichoń, A. (2006). Comparison of the Phytotoxkit Microbiotest and chemical variables for toxicity evaluation of sediments. Environmental Toxicology, 21, pp. 367–372.
  10. Daniel, M., Sharpe, A., Driver, J., Knight, A.W., Keenan, P.O., Walmsley, R.M., Robinson, A., Zhang, T. & Rawson, D. (2004). Results of a technology demonstration project to compare rapid aquatic toxicity screening tests in the analysis of industrial effluents. Journal of Environmental Monitoring, 6, pp. 855–865.
  11. EU Water Framework Directive. (2000). Directive 2000/60/EC of the European Parliament and of the Council of October 23, 2000 establishing a framework for Community action in the field of water policy. Official Journal L, 327, 22/12/2000, pp. 1–73.
  12. Fai, P.B. & Grant, A. (2010). An assessment of the potential of the microbial assay for risk assessment (MARA) for ecotoxicological testing. Ecotoxicology, 19, 8, pp. 1626–1633.
  13. Gabrielson, J., Kühn, I., Colque-Navarro, P., Hart, M., Iversen, A., Mckenzie, D. & Möllby, R. (2003). Microplate-based microbial assay for risk assessment and (eco)toxic fingerprinting of chemicals. Analytica Chimica Acta, 485, pp. 121–130.
  14. Gagne, F. & Blaise, C. (2005). Review of biomarkers and new techniques for in situ aquatic studies with bivalves, [in:] Environmental Toxicity Testing, Thompson, K.C., Wadhia, K. & Loibner, A.P. (Eds.). Blackwell Publishing Ltd., Oxford, pp. 206–228.
  15. Goczalkowice Resorvoir. (2022). The Goczałkowicki reservoir (the so-called Goczałkowickie Lake). (http://web.archive.org/web/20140828020743/http://www.gocz.pl:80/content/view/63/39 (14.07.2022)). (in Polish)
  16. Górecki, T. & Heba El-Hussieny, M. (2010). Total Parameters as a Tool for the Evaluation of the Load of Xenobiotics in the Environment. [in:] Analytical Measurements in Aquatic Environment, Namiesnik, J. & Szefer, P. (Eds.). CRC Press, Taylor & Francis Group, Boca Raton, pp. 223–241.
  17. Heisterkamp, I., Ratte, M., Schoknecht, U., Gartiser, S., Kalbe, U. & Ilvonen O. (2021). Ecotoxicological evaluation of construction products: inter‑laboratory test with DSLT and percolation test eluates in an aquatic biotest battery. Environmental Science Europe, 33, pp. 1–14. DOI:10.1186/s12302-021-00514-x
  18. Jabłońska-Czapla, M., Kowalski, E. & Mazierski, J. (2013). The role of point and non-point water pollution in metal deposits dispersion in Goczalkowice water reservoir, [in:] Current issues in water treatment and distribution, Zimoch, I. & Sawiniak, W. (Eds.). Institute of Water and Wastewater Engineering, Silesian University of Technology, Gliwice, pp. 47–57. (in Polish)
  19. Journal of Laws. (2009). Regulation of the Minister of the Environment of May 13 2009 on the forms and methods of monitoring surface and groundwater bodies, Journal of Laws of the Republic of Poland 2009 No. 81, item 685, (https://dziennikustaw.gov.pl/DU/2009/s/81/685 (14.07.2022)). (in Polish)
  20. Journal of Laws. (2011). Regulation of the Minister of the Environment of November 15, 2011 on the forms and methods of monitoring surface and groundwater bodies, Journal of Laws of the Republic of Poland 2011 No. 258, item 1550, (https://dziennikustaw.gov.pl/DU/2011/s/258/1550 (14.07.2022)). (in Polish)
  21. Kahru, A., Põllumaa, L., Reiman, R. & Rätsep, A. (1999). Predicting the toxicity of oil-shale industry wastewater by its phenolic composition. Alternatives to Laboratory Animals, 27, pp. 359–366.
  22. Kielka, E., Siedlecka, A., Wolf, M., Stróżak, S., Piekarska, K. & Strub, D. (2018). Ecotoxicity assessment of camphor oxime using Microtox assay – preliminary research. E3S Web of Conferences 44, 00066. DOI:10.1051/e3sconf/20184400066
  23. Kostecki, M., Kernert, J., Nocoń, W. & Janta-Koszuta, K. (2013). Seasonal and spatial variability of selected hydrochemical indices in Goczalkowice Reservoir. [in:] Current issues in water treatment and distribution, Zimoch, I. & Sawiniak, W. (Eds.). Institute of Water and Wastewater Engineering, Silesian University of Technology, Gliwice, pp. 93–103. (in Polish)
  24. Latif, M. & Licek, E. (2004). Toxicity assessment of wastewaters, river waters, and sediments in Austria using cost-effective microbiotests. Environmental Toxicology, 19, 4, 302–309.
  25. Lucivjanska, V., Lucivjanska, M. & Cizek, V. (2000). Sensitivity comparison of the ISO Daphnia and algal test procedures with Toxkit microbiotests. [in:] New Microbiotests for Routine Toxicity Screening and Biomonitoring, Persoone, G., Janssen, C. & De Coen, W. (Eds.). Kluwer Academic/Plenum Publishers, New York, pp. 243–246.
  26. Mankiewicz-Boczek, J., Nałęcz-Jawecki, G., Drobniewska, A., Kaza, M., Sumorok, B., Izydorczyk. K.M., Zalewski, M. & Sawicki, J. (2008). Application of a microbiotests battery for complete toxicity assessment of rivers. Ecotoxicology and Environmental Safety, 71, 3, pp. 830–836.
  27. Manusadzianas, L., Balkelyte, L., Sadauskas, K., Blinova, I., Põllumaa, L. & Kahru, A. (2003). Ecotoxicological study of Lithuanian and Estonian wastewaters: selection of the biotests and correspondence between toxicity and chemical-based indices. Aquatic Toxicology, 63, 1, pp. 27–41.
  28. Maradona, A., Marshall, G., Mehrvar, M., Pushchak, R., Laursen, A.E., Mccarthy, L.H., Bostan, V. & Gilbride, K.A. (2012). Utilisation of multiple organisms in a proposed early-warning biomonitoring system for real-time detection of contaminants: preliminary results and modeling. Journal of Hazardous Materials, 219–220, pp. 95–102.
  29. Moser, H., Angrick, M. & Römbke, J. (2009). Ecotoxicological Characterisation of Waste: Results and Experiences of an International Ring Test, Springer, Stuttgart, 2009.
  30. Nałęcz-Jawecki, G., Wadhia, K., Adomas, B., Piotrowicz-Cielak, A.I. & Sawicki, J. (2010). Application of microbial assay for risk assessment biotest in evaluation of toxicity of human and veterinary antibiotics. Environmental Toxicology, 25, 5, pp. 487–494.
  31. Nature 2000 Area. (2022). Central Register of Forms of Nature Protection. GDOŚ, (https://crfop.gdos.gov.pl/CRFOP/widok/viewnatura2000.jsf?fop=PL.ZIPOP.1393.N2K.PLB240001.B (14.07.2022)). (in Polish)
  32. Olkova, A. & Berezin, G. (2021). Battery of bioassays" for diagnostics of toxicity of natural water when pollution with aluminum compounds. Journal of Ecological Engineering, 22, 2, pp.195–199. DOI:10.12911/22998993/131029
  33. Palma, P., Alvarenga, P., Palma, V., Matos, C., Fernandes, R.M., Soares, A. & Barbosa, I.R. (2010). Evaluation of surface water quality using an ecotoxicological approach: a case study of the Alqueva Reservoir (Portugal). Environmental Science and Pollution Research, 17, 3, pp. 703–716. DOI: 10.1007/s11356-009-0143-3.
  34. Pejman, A.H., Nabi Bidhendi, G.R., Karbassi, A.R., Mehrdadi, N. & Esmaeili Bidhendi, M. (2009). Evaluation of spatial and seasonal variations in surface water quality using multivariate statistical techniques. International Journal of Environmental Science and Technology, 6, 3, pp. 467–476.
  35. Persoone, G., Baudo, R., Cotman, M., Blaise, C., Thompson, K.C., Moreira-Santos, M., Vollat, B., Törökne, A. & Han, T. (2009). Review on the acute Daphnia magna toxicity test – Evaluation of the sensitivity and the precision of assays performed with organisms from laboratory cultures or hatched from dormant eggs. Knowledge and Management of Aquatic Ecosystems, 393, pp. 1–29.
  36. Persoone, G., Marsalek, B., Blinova, I., Törökne, A., Zarina, D., Manusadzianas, L., Nalecz-Jawecki, G., Tofan, L., Stepanova, N., Tothova, L. & Kolar, B. (2003). A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters. Environmental Toxicology, 18, pp. 395–402.
  37. Szara-Bąk, M., Baran, A., Klimkowicz-Pawlas, A., Tkaczewska, J. & Wojtasik, B. (2021). Mobility, ecotoxicity, bioaccumulation and sources of trace elements in the bottom sediments of the Rożnów reservoir. Environmental Geochemistry Health, 43, pp. 4701–4718. DOI:10.1007/s10653-021-00957-4
  38. Szklarek, S., Stolarska, M., Wagner, I. & Mankiewicz-Boczek, J. (2015). The microbiotest battery as an important component in the assessment of snowmelt toxicity in urban watercourses – preliminary studies. Environmental Monitoring Assessment, 187, 16, pp. 1–12. DOI:10.1007/s10661-014-4252-1
  39. Szklarek, S., Kiedrzyńska, E., Kiedrzyński, M., Mankiewicz-Boczek, J., Mitsch, W.J. & Zalewski, M. (2021). Comparing ecotoxicological and physicochemical indicators of municipal wastewater effluent and river water quality in a Baltic Sea catchment in Poland. Ecological Indicators, 126, pp. 1–12. DOI:10.1016/j.ecolind.2021.107611
  40. Törökne, A. & Toro, K. (2010). Evaluation of the toxicity of river and creek sediments in Hungary with two different methods. Environmental Toxicology, 25, 5, pp. 504–509.
  41. Vandenbroele, M.C., Heijerick, D.G., Vangheluwe, M.L. & Janssen. CR (2000). Comparison of the conventional algal assay and the Algaltoxkit F microbiotest for toxicity evaluation of sediment pore waters. [in:] New Microbiotests for Routine Toxicity Screening and Biomonitoring, Persoone, G., Janssen, C. &, De Coen W. (Eds.). Kluwer Academic/Plenum Publishers, New York, pp. 261–268.
  42. Vliet Van der, L., Velicogna, J., Princz, J. & Scroggins, R. (2012). Phytotoxkit: a critical look at a rapid assessment tool. Environmental Toxicology and Chemistry, 31, 2, pp. 316–323.
  43. Wadhia, K. & Thompson, K.C. (2007). Low-cost ecotoxicity testing of environmental samples using microbiotests for potential implementation of the Water Framework Directive. Trends in Analytical Chemistry, 26, 4, pp. 300–307.
  44. Wadhia, K. & Dando, T.R. (2009). Environmental toxicity testing using the Microbial Assay for Risk Assessment (MARA). Fresenius Environmental Bulletin, 18, 2, pp. 213–218.
  45. Wielen Van der, C. & Halleux, I. (2000). Shifting from the conventional ISO 8692 algal growth inhibition test to the Algaltoxkit F microbiotest. [in:] New Microbiotests for Routine Toxicity Screening and Biomonitoring, Persoone, G., Janssen, C. & De Coen, W. (Eds.). Kluwer Academic/Plenum Publishers, New York, pp. 269–272. DOI: 10.1007/978-1-4615-4289-6_44.
  46. Wolska, L., Kochanowska, A. & Namiesnik, J. (2010). Application of Biotests – chapter 9. [in:] Analytical Measurements in Aquatic Environment, Namiesnik, J. & Szefer, P. (Eds.). CRC Press, Taylor & Francis Group, Boca Raton, pp. 189–223.
  47. Zgórska, A., Bondaruk, J., Dudziak, M. & Hamerla, A. (2020). Impact of industrial discharge on aquatic ecosystems of the Kłodnica River with reference to Water Framework Directive objectives. Polish Journal of Environmental Studies, 29, 4, pp. 2945–2953. DOI:10.15244/pjoes/112931
  48. Zhengjun, W. & Huili, G. (2010). Evaluating the effectiveness of routine water quality monitoring in Miyun reservoir based on geostatistical analysis. Environmental Monitoring and Assessment, 160, pp. 465–478. DOI: 10.1007/s10661-008-0711—x.
Przejdź do artykułu

Autorzy i Afiliacje

Piotr Łaszczyca
1
ORCID: ORCID
Mirosław Nakonieczny
2
ORCID: ORCID
Maciej Kostecki
3
ORCID: ORCID

  1. Retired university professor, University of Silesia in Katowice, Poland
  2. University of Silesia in Katowice, Poland
  3. Institute of Environmental Engineering Polish Academy of Sciences, Zabrze, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Owing to its high concentrations of nitrogen and phosphorus, the slurry from water hyacinth (Pontederia crassipes) biogas production cannot be discharged directly without further treatment. To achieve the target of water recycling, a new strategy of combining a Carrousel oxidation ditch with a water spinach wetland was developed in this study for the harmless treatment of Pontederia crassipes biogas slurry. First, the water quality characteristics of the biogas slurry were measured. Then, comprehensive tests of the combined slurry treatment system were carried out to verify pollutant removal performance and mechanism. The results showed that the Carrousel oxidation ditch reduced the inlet pollutant load of the subsequent water spinach wetland. The chemical oxygen demand (COD), and ammonium nitrogen (NH4+-N), total nitrogen (TN), and total phosphorus (TP) contents of the average effluent from the combined system were less than 50 mg/L, 1.6 mg/L, 6 mg/L, and 0.5 mg/L, respectively, which means that all met urban sewage treatment standard of Level 1 Grade A (GB18918-2002). Gas chromatography – mass spectrometry analysis showed that the combined system had decreased various types of organic pollutants in the biogas slurry exponentially, efficiently removing alkane pollutants, aromatic hydrocarbons, and heterocyclic compounds. Scanning electron microscopy images revealed very large surface area of the water spinach roots in the wetland, which played important roles in enriching the microorganisms and trapping organic matter. Plant absorption, microbial degradation, and filtration were the primary ways in which the water spinach wetland purified the biogas slurry.
Przejdź do artykułu

Bibliografia

  1. Appels, L., Lauwers, J., Degrève J., Helsen, L., Lievens, L., Willems, K., Van Impe, L. & Dewil, R. (2011). Anaerobicdigestion in global bio-energy production: Potential and research challenges. Renewable and Sustainable Energy Reviews, 15, 9, pp. 4295-4301. DOI:10.1016/j.rser.2011.07.121
  2. Ariffin, F. D., Halim, A. A., Hanafiah, M. M., Awang, N., Othman, M. S., Azman, S. A. A. & Bakri, N. S. M. (2019). The effects of african catfish, cltfish, clarias gariepinus pond farm's effluent on water quality of Kesang river in Malacca, Malaysia. Applied ecology and Environmental Research, 17, 2, pp. 1531-1545. DOI:10.15666/aeer/1702_15311545
  3. Bergier, T. & Wlodyka-Bergier, A. (2016). Semi-technical scale research on constructed wetland removal of aliphatic hydrocarbons C7-C40 from wastewater from a car service station. Destalnation and Water Treatment, 57, 3, pp. 1534-1542. DOI:10.1080/19443994.2015.1030122
  4. Carlini, M., Castellucci, S. & Mennuni, A. (2018). Water hyacinth biomass: Chemical and thermal pre-treatment for energetic utilization in anaerobic digestion process. Energy Procedia, 148, pp. 431-438. DOI:10.1016/j.egypro.2018.08.106
  5. Carnaje, N.P., Talagon, R.B., Peralta, J.P., Shah, K. & Paz-Ferreiro, J. (2018). Development and characterisation of charcoal briquettes from water hyacinth (Eichhomia crassipes)-molasses blend. PLOS One, 13, 11. DOI:10.1371/journal.pone.0207135
  6. China, S.E.P.A.O. (2004), National standard methods for water and wastewater quality analysis. China Environmental Science Press, Beijing, 2004
  7. Das, A., Ghosh, P., Tanmay, P., Ghosh, U., Pati, B.R. & Mondal, K.C. (2016). Production of bioethanol as useful biofuel through the bioconversion of water hyacinth (Eichhornia crassipes). Biotech, 70, 6, pp. 69-77. DOI:10.1007/s13205-016-0385-y
  8. Das, B., Thakur, S., Chaithanya, M.S. &Biswas, P. (2019). Batch investigation of constructed wetland microbial fuel cell with reverse osmosis (RO) concentrate and wastewater mix as substrate. Biomass and Bioenergy, 122, pp. 231-237. DOI:10.1016/j.biombioe.2019.01.017
  9. Godin, B., Lamaudière, S., Agneessens, R., Schmit. T., Goffart. J-P., Stilmant, D., Gerin, P.A. & Delcarte, J. (2013). Chemical Composition and Biofuel Potentials of a Wide Diversity of Plant Biomasses. Energy Fuels, 27, 5, pp. 2588-2598. DOI: 10.1021/ef3019244
  10. Guragain, Y.N., Coninck, J., Husson, F., Durand, A. & Rakshit, S.K. (2011). Comparison of some new pretreatment methods for second generation bioethanol production from wheat straw and water hyacinth. Bioresource Technology, 102, 6, pp.4416-4424. DOI:10.1016/j.biortech.2010.11.125
  11. Jan, V., (2010). Constructed wetlands for wastewater treatment. Water, 2, 3, pp. 530-549. DOI:10.3390/w2030530
  12. Jin, P.K., Wang, X.B., Wang, X.C., Hgo, H.H. & Jin, X. (2015). A new step aeration approach towards the improvement of nitrogen removal in a full scale Carrousel oxidation ditch. Bioresource Technology. 198, pp. 23-30. DOI: 10.1016/j.biortech.2015.08.145
  13. Li, T.J., Jin, Y., Huang, Y., (2022). Water quality improvement performance of two urban constructed water quality treatment wetland engineering landscaping in Hangzhou, China. Water Science and Technology, 85, 5, pp.1454-1469. DOI:10.2166/wst.2022.063
  14. Li, X.L., Zhang, J., Zhang, X., Li, J., Liu, F. & Chen, Y. (2019). Start-up and nitrogen removal performance of CANON and SNAD processes in a pilot-scale oxidation ditch reactor. Process Biochemistry, 84, pp. 134-142. DOI: 10.1016/j.procbio.2019.06.010
  15. Li, X-N., Song, H-L., Li W., Lu, X-W. & Nishimura, O. (2010). An integrated ecological floating-bed employing plant, freshwater clam and biofilm carrier for purification of eutrophic water. Ecological engineering, 36, 4, pp. 382-390. DOI: 10.1016/j.ecoleng.2009.11.004
  16. Liu, F., Sun, L., Wan, J.B., et al. (2020). Performance of different macrophytes in the decontamination of and electricity generation from swine wastewater via an integrated constructed wetland-microbial fuel cell process. Journal of Environmental Science, 89, pp. 252-262. DOI:10.1016/j.jes.2019.08.015.
  17. Patyal, V., Jaspal, D., Khare, K., (2021). Materials in constructed wetlands for wastewater remediation: A review. Water Environment Reserach, 93,12, pp.2853-2872. DOI:10.1002/wer.1648
  18. Ren, N.Q., Li, J.Z., (2004). Biological Technology in the Treatment of Environmental Pollution. Chemical Industry Press, Beijing 2004.
  19. Sierra, C.G., Hernández, M.G., Murrieta R. (2022). Alternative uses of water Hyacinth (Pontederia crassipes) from a sustainable perspective: a systematic literature review. Sustainability, 14, 7, pp. 3931. DOI:10.3390/su14073931
  20. Steinhoff-Wrześniewska, A., Strzelczyk, M., Helis, M., Paszkiewicz-Jasińska, A., Gruss, Ł., Pulikowski, K. & Skorulski, W. (2022). Identification of catchment areas with nitrogen pollution risk for lowland river water quality. Archives of Environmental Protection, 48, 2, pp. 53-64. DOI: 10.24425/aep.2022.140766.
  21. Tuszynska, A., Kolecka, K., Quant, B., (2013). The influence of phosphorus fractions in bottom sediments on phosphate removal in semi-natural systems as the 3rd stage of biological wastewater treatment, Ecological Engineering, 53, pp.321-328. DOI:10.1016/j.ecoleng.2012.12.068
  22. Vymazal, J., (2007). Removal of nutrients in various types of constructed wetlands. Science of the Total Environment, 380, 1, pp. 48-65. DOI: 10.1016/j.scitotenv.2006.09.014
  23. Wang, J.., Li, A., Wang, Q., Zhou, Y., Fu, L. &Li, Y. (2010). Assessment of the manganese content of the drinking water source in Yancheng, China, Journal of Hazardous Materials, 182, 1-3, pp.259-65. DOI:10.1016/j.jhazmat.2010.06.023
  24. Wu, L., Li, X.N., Song, H.L., (2013). Enhanced removal of organic matter and nitrogen in a vertical-flow constructed wetland with Eisenia foetida, Desalination and water treatment, 51,40-42, pp.7460-7468. DOI: 10.1080/19443994.2013.792140
  25. Wu, Y.F., (2013). Characteristics of DOM and Removal of DBPs Precursors across O-3-BAC Integrated Treatment for the Micro-Polluted Raw Water of the Huangpu River, Water, 5, 4, pp.1472-1486. DOI: 10.3390/w5041472
  26. Xia, S.B., Liu, J.X., (2004). An innovative integrated oxidation ditch with vertical circle for domestic wastewater treatment, Process Biochemistry. 39, 9, pp. 1111-1117. DOI:10.1016/S0032-9592(03)00216-4
  27. Xu, D., Liu, S., Chen, Q. & Ni, J. Xu, D., Liu, S., Chen, Q. & Ni, J. (2017). Microbial community compositions in different functional zones of Carrousel oxidation ditch system for domestic wastewater treatment, AMB Express, 7, 40. DOI:10.1186/s13568-017-0336-y
  28. Yang, G., Wang, B., Wang, H., He, Z., Pi, Z., Zhou, J., Liang, T., Chen, M., He, T. & Fu, T. (2022). Removal of organochlorine pesticides and metagenomic analysis by multi-stage constructed wetland treating landfill leachate. Chemosphere, 301, 134761. DOI:10.1016/j.chemosphere.2022.134761
  29. Yin, F.F., Guo, H.F., (2022). Influence of additional methanol on both pre- and post-denitrification processes in treating municipal wastewater. Water Science and Technology, 85, 5, pp.1434-1443. DOI:10.2166/wst.2022.060
  30. Yu, Y.Q., Lu, X.W., (2017). Start-up performance and granular sludge features of an improved external circulating anaerobic reactor for algae-laden water treatment. Saudi Journal of Biological Sciences, 24, 5, pp.526-531. DOI:10.1016/j.sjbs.2014.09.011
  31. Zhai, X., Piwpuan, N., Arias, C.A., Headley, T. & Brix, H. (2013). Can root exudates from emergent wetland plants fuel denitrification in subsurface flow constructed wetland systems?. Ecological Engineering, 61, 19, pp. 555-563. DOI:10.1016/j.ecoleng.2013.02.014
  32. Zhang, C., Ye, H., Liu, F., He, Y., Kong, W. & Sheng, K. (2016). Determination and visualization of ph values in anaerobic digestion of water hyacinth and rice straw mixtures using hyperspectral imaging with wavelet transform denoising and variable selection. Sensors, 16, 2, pp.2-10. DOI:10.3390/s16020244
  33. Zhang, Q.Z., Weng, C., Huang, H., Achal, V. & Wang, D. (2016). Optimization of Bioethanol Production Using Whole Plant of Water Hyacinth as Substrate in Simultaneous Saccharification and Fermentation Process, Frontiers in Microbiology, 6 ,1411. DOI:10.3389/fmicb.2015.01411
  34. Zhang, Z., Li, B-I.., Xiang, X-Y.,Zhang, C. & Chai, H. (2012). Variation of biological and hydrological parameters and nitrogen removal optimization of modified Carrousel oxidation ditch process, Journal of Central South University, 19, 9, pp. 842-849. DOI:10.1007/s11771-012-1081-7
  35. Zhu, X., Campanaro, S., Trea, L., Kougias, P.G. & Angelidaki, I. (2019). Novel ecological insights and functional roles during anaerobic digestion of saccharides unveiled by genome-centric metagenomics. Water Research, 151, pp. .271-279. DOI:10.1016/j.watres.2018.12.041
Przejdź do artykułu

Autorzy i Afiliacje

Yaqin Yu
1
Xueyou Fang
1
Lanying Li
1
Yumeng Xu
2

  1. Yancheng Institute of Technology, China
  2. Xi'an University of Architecture and Technology, China
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The aim of the study was to assess the possibility of using natural carbonaceous materials such aspeat, lignite, and hard coal as low-cost sorbents for the removal of Direct Orange 26 azo dye from an aqueous solution. The adsorption kinetics and the influence of experimental conditions were investigated. The following materials were used in the research: azo dye Direct Orange 26, Spill-Sorb “Fison” peat (Alberta, Canada), lignite (Bełchatów, Poland), and hard coal (“Zofiówka” mine, Poland). The morphology and porous structure of the absorbents were tested. Dye sorption was carried out under static conditions, with different doses of sorbents, pH of the solution, and ionic strength. It was observed that the adsorption of Direct Orange 26 dye on all three adsorbents was strongly dependent on the pH of the solution, while the ionic strength of the solution did not affect the adsorption efficiency. The adsorption kinetics were consistent with the pseudo-second-order reaction model. The stage which determines the rate of adsorption is the diffusion of the dye in the near-surface layer. The process of equilibrium adsorption of Direct Orange 26 dye on all tested adsorbents is best described by the Langmuir isotherm. The maximum adsorption capacity for peat, brown coal and hard coal was 17.7, 15.1 and 13.8 mg/g, respectively. The results indicate that peat, lignite, and hard coal can be considered as alternative adsorbents for removing azo dyes from aqueous solutions.
Przejdź do artykułu

Bibliografia

  1. Al-Ghouti, M.A. & Da'ana, D.A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials, 393, 122383. DOI:10.1016/j.jhazmat.2020.122383
  2. Allen, S.J., Mckay,G. & Porter, J.F. (2004). Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. Journal of Colloid and Interface Science, 280, pp. 322–333. DOI:10.1016/j.jcis.2004.08.078
  3. Bansal, R.C. & Goyal, M. (2005). Activated Carbon Adsorption, Taylor & Francis, CRC Press, Boca Raton, 2005. DOI:10.1201/9781420028812
  4. Bhatti, H.N., Safa, Y., Yakout, S.M., Shair, O.H., Iqbal, M. & Nazir, A. (2020). Efficient removal of dyes using carboxymethyl cellulose/alginate/polyvinyl alcohol/rice husk composite: Adsorption/desorption, kinetics and recycling studies. International Journal of Biological Macromolecules, 150, pp. 861–870. DOI:10.1016/j.ijbiomac.2020.02.093
  5. Dzieniszewska, A. & Kyzioł-Komosińska, J. (2018). Zdolności sorpcyjne wybranych substancji bogatych w materię organiczną w stosunku do barwników, Polska Akademia Nauk, Komitet Inżynierii Środowiska, Monografie IPIS PAN, Nr 142, Zabrze, Polska.
  6. Goswami, L., Kushwaha, A., Kafle, S.R. & Kim, B.-S. (2022). Surface modification of biochar for dye removal from wastewater. Catalysts, 12, 817. DOI:10.3390/catal12080817
  7. Gupta, V.K. & Suhas (2009). Application of low-cost adsorbents for dye removal – A review. Journal of Environmental Management, 90, pp. 2313–2342. DOI:10.1016/j.jenvman.2008.11.017
  8. Hassani, A., Vafaei, F., Karaca,S. & Khataee, A.R. (2014). Adsorption of a cationic dye from aqueous solution using Turkish lignite: Kinetic, isotherm, thermodynamic studies and neural network modeling. Journal of Industrial and Engineering Chemistry, 20, pp. 2615– 2624. DOI:10.1016/j.jiec.2013.10.049
  9. Herrera-González, A.M., Reyes-Angeles, M.C. & Peláez-Cid, A.A. (2021). Adsorption of anionic dyes using composites based on basic polyelectrolytes and physically activated carbon. Desalination and Water Treatment, 230, 346–358. DOI:10.5004/dwt.2021.27445
  10. Izadyar, S. & Rahimi, M. (2007). Use of beech wood sawdust for adsorption of textile dyes. Pakistan Journal of Biological Sciences, 10, 2, pp. 287–293.
  11. Kajjumba, G.W., Emik, S., Öngen, A., Özcan, H.K. & Aydın, S. (2018). Modelling of adsorption kinetic processes – errors, theory and application. [in:] Advanced sorption process applications, Edebali, S. (Ed), IntechOpen, Rijeka, pp. 1–19.
  12. Kaushik, C.P., Tuteja, R., Kaushik, N. & Sharma, J.K. (2009). Minimization of organic chemical load in direct dyes effluent using low cost adsorbents. Chemical Engineering Journal, 155, pp. 234–240. DOI: 10.1016/j.cej.2009.07.042
  13. Konicki, W., Hełminiak, A., Arabczyk, W. & Mijowska, E. (2017). Removal of anionic dyes using magnetic Fe@graphite core-shell nanocomposite as an adsorbent from aqueous solutions. Journal of Colloid and Interface Science, 497, pp. 155–164. DOI:10.1016/j.jcis.2017.03.008
  14. Kreiner, K. & Żyła, M. (2006). Binarny charakter powierzchni węgla kamiennego. Górnictwo i Geoinżynieria, 30, 2, pp. 19–34.
  15. Kuśmierek, K., Gałan, M., Kamiński, W. & Świątkowski, A. (2020a). Use of sawdust as a low-cost sorbent for the removal of azo dyes from water. Przemysl Chemiczny, 99, 2, pp. 201–205. DOI:10.15199/62.2020.2.2
  16. Kuśmierek, K., Świątkowski, A., Wierzbicka, E. & Legocka, I. (2020b). Enhanced adsorption of Direct Orange 26 dye in aqueous solutions by modified halloysite. Physicochemical Problems of Mineral Processing, 56, 4, pp. 693–701. DOI:10.37190/ppmp/124544
  17. Kuśmierek, K., Zarębska, K. & Świątkowski, A. (2016). Hard coal as a potential low-cost adsorbent for removal of 4-chlorophenol from water. Water Science & Technology, 73, 8, pp. 2025–2030. DOI:10.2166/wst.2016.046
  18. Lellis, B., Fávaro-Polonio, C.Z., Pamphile, J.A. & Polonio, J.C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3, pp. 275–290. DOI:10.1016/j.biori.2019.09.001
  19. de Mattos, N.R., de Oliveira, C.R., Camargo, L.G.B., da Silva, R.S.R. & Lavall, R.L. (2019). Azo dye adsorption on anthracite: a view of thermodynamics, kinetics and cosmotropic effects. Separation and Purification Technology, 209, pp. 806-814. DOI:10.1016/j.seppur.2018.09.027
  20. O'Keefe, J.M.K., Bechtel, A., Christanis, K., Dai, S., DiMichele, W.A., Eble, C.F., Esterle, J.S., Mastalerz, M., Raymond, A.L., Valentim, B.V., Wagner, N.J., Ward, C.R. & Hower, J.C. (2013). On the fundamental difference between coal rank and coal type. International Journal of Coal Geology, 118, pp. 58–87. DOI:10.1016/j.coal.2013.08.007
  21. Rafique, M.A., Kiran, S., Ashraf, A., Mukhtar, N., Rizwan, S., Ashraf, M. & Arshad, M.Y. (2022). Effective removal of Direct Orange 26 dye using copper nanoparticles synthesized from Tilapia fish scales. Global NEST Journal, 24, 2, pp. 311–l 317. DOI:10.30955/gnj.004234
  22. Rusu, L., Harja, M,. Simion, A.I., Suteu, D., Ciobanu, G. & Favier, L. (2014). Removal of Astrazone Blue from aqueous solutions onto brown peat. Equilibrium and kinetics studies. Korean Journal of Chemical Engineering, 31, 6, pp. 1008–1015. DOI:10.1007/s11814-014-0009-3
  23. Safa, Y. & Bhatti, H.N. (2011). Kinetic and thermodynamic modeling for the removal of Direct Red-31 and Direct Orange-26 dyes from aqueous solutions by rice husk. Desalination, 272, pp. 313–322. DOI:10.1016/j.desal.2011.01.040
  24. Safa, Y., Bhatti, H.N., Bhatti, I.A. & Asgher, M. (2011). Removal of Direct Red-31 and Direct Orange-26 by low cost rice husk: Influence of immobilisation and pretreatments. Canadian Journal of Chemical Engineering, 89, pp. 1554–1565. DOI:10.1002/cjce.20473
  25. Sepulveda, L., Fernandez, K., Contreras, E. & Palma, C. (2004). Adsorption of dyes using peat: equilibrium and kinetic studies. Environmental Technology, 25, pp. 987–996. DOI:10.1080/09593332508618390
  26. Sočo, E., Pająk, D. & Kalembkiewicz, J. (2020). Multi-component sorption and utilization of solid waste to simultaneous removing basic dye and heavy metal from aqueous system. Archives of Environmental Protection, 46, pp. 62-75. DOI:10.24425/aep.2020.132527
  27. Tan, K.L. & Hameed, B.H. (2017). Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 74, pp. 25–48. DOI:10.1016/j.jtice.2017.01.024
  28. Tarasevich, Y.I. (2001). Porous structure and adsorption properties of natural porous coal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 176, pp. 267–272. DOI:10.1016/S0927-7757(00)00702-0
  29. Tomczak, E. & Blus, M. (2016). Sorption dynamics of Direct Orange 26 dye onto a corncob plant sorbent. Ecological Chemistry and Engineering S, 23, 1, pp. 175–185. DOI:10.1515/eces-2016-0012
  30. Tomczak, E. & Tosik, P. (2014). Sorption equilibrium of azo dyes Direct Orange 26 and Reactive Blue 81 onto a cheap plant sorbent. Ecological Chemistry and Engineering S, 21, 3, pp. 435–445. DOI:10.2478/eces-2014-0032
  31. Venkata Mohan, S., Chandrasekhar Rao, N. & Karthikeyan, J. (2002). Adsorptive removal of direct azo dye from aqueous phase onto coal based sorbents: a kinetic and mechanistic study. Journal of Hazardous Materials, B90, pp. 189–204. DOI:10.1016/S0304-3894(01)00348-X
  32. Wani, K.A., Jangid, N.K. & Bhat, A.R. (2020), Impact of textile dyes on public health and the environment, IGI Global, Hershey, USA.
Przejdź do artykułu

Autorzy i Afiliacje

Krzysztof Kuśmierek
1
ORCID: ORCID
Lidia Dąbek
2
Andrzej Świątkowski
1
ORCID: ORCID

  1. Institute of Chemistry, Military University of Technology, Warsaw, Poland
  2. Faculty of Environmental Engineering, Geomatics and Renewable Energy,Kielce University of Technology, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The constructed wetland integrated with microbial fuel cell (CW-MFC) has gained attention in wastewater treatment and electricity generation owing to its electricity generation and xenobiotic removal efficiencies. This study aims to use the CW-MFC with different macrophytes for domestic wastewater treatment and simultaneously electricity generation without chemical addition. The various macrophytes such as Crinum asiaticum, Canna indica, Hanguana malayana, Philodendron erubescens, and Dieffenbachia seguine were used as a cathodic biocatalyst. The electrochemical properties such as half-cell potential and power density were determined. For wastewater treatment, the chemical oxygen demand (COD) and other chemical compositions were measured. The results of electrochemical properties showed that the maximal half-cell potential was achieved from the macrophyte D. seguine. While the maximal power output of 5.42±0.17 mW/m2 (7.75±0.24 mW/m3) was gained from the CW-MFC with D. seguine cathode. Moreover, this CW-MFC was able to remove COD, ammonia, nitrate, nitrite, and phosphate of 94.00±0.05%, 64.31±0.20%, 50.02±0.10%, 48.00±0.30%, and 42.05±0.10% respectively. This study gained new knowledge about using CW-MFC planted with the macrophyte D. seguine for domestic wastewater treatment and generation of electrical power as a by-product without xenobiotic discharge.
Przejdź do artykułu

Bibliografia

  1. Almeida-Naranjo, C.E, Guachamin, G., Guerrero, V.H. & Villamar, C.V. (2020). Heliconia stricta hubber behavior on hybrid constructed wetlands fed with synthetic domestic wastewater. Water, 12, 5, pp. 1373. DOI:10.3390/w12051373
  2. APHA AWWA WEF (2005). Standard methods for the examination of water and wastewater. American Public Health Association, Washington 2005.
  3. Araneda, I., Tapia, N.F., Allende, K.L. & Vargas, I.T. (2018). Constructed wetland-microbial fuel cell for sustainable greywater treatment. Water, 10, 7, pp. 940. DOI:10.3390/w10070940
  4. Bracher, G.H., Carissmi, E., Wolff, D.B., Graepin, C. & Hubner, A.P. (2020). Optimization of an electrocoagulation-flotation system for domestic wastewater treatment and reuse. Environmental Technology, 42, 17, pp. 2669-2679. DOI:10.1080/09593330.2019.1709905
  5. Chaijak, P., Lertworapreecha, M., Changkit, N. & Sola, P. (2022). Electricity generation from hospital wastewater in microbial fuel cell using radiation tolerant bacteria. Biointerface Research in Applied Chemistry, 12, 4, pp. 5601-5609. DOI:10.33263/BRIAC124.56015609
  6. Chaijak, P., Sukkasem, C., Lertworapreecha, M., Boonsawang, P., Wijasika, S. & Sato, C. (2018). Enhancing electricity generation using a laccase-based microbial fuel cell with yeast Galactomyces reessii on the cathode. Journal of Microbiology and Biotechnology, 28, 8, pp. 1360-1366. DOI:10.4014/jmb.1803.03015
  7. Corbella, C. & Puigagut, J. (2018). Improving domestic wastewater treatment efficiency with constructed wetland microbial fuel cells: Influence of anode material and external resistance. Science of the Total Environment, 631-632, 1, pp. 1406-1414. DOI:10.1016/j.scitotenv.2018.03.084
  8. Das, B., Gaur, S.S., Katha, A.R., Wang, C.T. & Katiyar, V. (2021). Crosslinked poly(vinyl alcohol) membrane as separator for domestic wastewater fed dual chambered microbial fuel cells. International Journal of Hydrogen Energy, 46, 10, pp. 7073-7086. DOI:10.1016/j.ijhydene.2020.11.213
  9. Dincer, I. & Siddiqui, O. (2020). Ammonia fuel cells, Elsevier, Amsterdam 2020.
  10. Ge, X., Cao, X., Song, X., Wang, Y., Si, Z., Zhao, Y., Wang, W.. & Tesfahunegn, A.A. (2020). Bioenergy generation and simultaneous nitrate and phosphorus removal in a pyrite-based constructed wetland-microbial fuel cell. Bioresour Technol, 296, pp.122350. DOI:10.1016/j.biortech.2019.122350
  11. Guadarrama-Perez, O., Bahena-Rabadan, K., Dehesa-Carrasco, U., Perez, V.H.G. & Estrada-Arriaga, E.B. (2020). Bioelectricity production using macrophytes in constructed wetland-microbial fuel cells. Environmental Technology, 2020. DOI:10.1080/09593330.2020.1841306
  12. Han, J.L., Yang, Z.N., Wang, H., Zhou, H.Y., Xu, D., Yu, S. & Gao, L. (2021). Decomposition of pollutants from domestic sewage with the combination system of hydrolytic acidification coupling with constructed wetland microbial fuel cell. Journal of Cleaner Production, 319, 1, pp. 128650. DOI:10.1016/j.jcliepro.2021.128650
  13. Ho, V.T.T., Dang, M.P., Lien, L.T., Huynh, T.T., Hung, T.V. & Bach, L.G. (2020). Study on domestic wastewater treatment of the horizontal subsurface flow wetlands (HSSF-CWs) using Brachiaria mutica. Waste and Biomass Valorization, 11, 10, pp. 5627-5634. DOI:10.1007/s12649-020-01084-4
  14. Karla, M.R., Alejandra, V.A.C., Lenys, F. & Patricio, E.M. (2022). Operational performance of corncobs/sawdust biofilters coupled to microbial fuel cells treating domestic wastewater. Science of the Total Environment, 809, 1, pp. 151115. DOI:10.1016/j.scitotenv.2021.151115
  15. Kim, M., Song, Y.E., Li, S. & Kim, J.R. (2021). Microwave-treated expandable graphite granule for enhancing the bioelectricity generation of microbial fuel cells. Journal of Electrochemical Science and Technology, 12, 3, pp. 297-301. DOI:10.33961/jecst.2020.01739
  16. Klimsa, L., Melcakova, I., Novakova, J., Bartkova, M., Hlavac, A., Krakovska, A., Dombek, V. & Andras, P. (2020). Recipient pollution caused by small domestic wastewater treatment plants with activated sludge. Carpathian Journal of Earth and Environmental Science, 15, 1, pp. 19-25. DOI:10.26471/cjees/2020/015/104
  17. Libecki, B. & Mikolajczyk, T. (2021). Phosphorus removal by microelectrolysis and sedimentation in the integrated devices. Archives of Environmental Protection, 47, 1, pp. 3-9. DOI:10.24425/aep.2021.136442
  18. Moondra, N., Jariwala, N.D. & Christian, R.A. (2020). Sustainable treatment of domestic wastewater through microalgae. International Journal of Phytoremediation, 22, 14, pp. 1480-1486. DOI:10.1080/15226514.2020.1782829
  19. Nhut, H.T., Hung, N.T.Q., Sac, T.C., Bang, N.H.K., Tri, T.Q., Hiep, N.T. & Ky, N.M. (2020). Removal of nutrients and pollutants from domestic wastewater treatment by sponge-based moving bed biofilm reactor. Environmental Engineering Research, 25, 5, pp. 652-658. DOI:10.4491/eer.2019.285
  20. Ni, J., Steinberger-Wilckens, R. & Wang, O.H. (2021). Simultaneous domestic wastewater treatment and electricity generation in microbial fuel cell with Mn(IV) oxide addition. Chemistry Select, 6, 3, pp.369-375. DOI:10.1002/slct.202004680
  21. Pasquini, L., Munoz, J.F., Pons, M.N., Yvon, J., Dauchy, X., France, X., Le, N.D., France-Lanord, C. & Gorner, T. (2014). Occurrence of eight household micropollutants in urban wastewater and their fate in a wastewater treatment plant. Statistical evaluation. The Science of the Total Environment, 481, 1, pp. 456-468. DOI:10.1016/j.scitotenv.2014.02.075
  22. Rajasulochana, P. & Preethy, V. (2016). Comparison on efficiency of various techniques in treatment of waste and sewage water – A comprehensive review. Resource-Efficient Technologies, 2, 4, pp.175-184. DOI:10.1016/j.reffit.2016.09.004
  23. Shukla, R., Gupta, D., Singh, G. & Mishra, V.K. (2021). Performance of horizontal flow constructed wetland for secondary treatment of domestic wastewater in a remote tribal area of Central India. Sustainable Environment Research, 31, 1, pp. 13. DOI:10.1186/s42834-021-00087-7
  24. Vega de Lille, M.I., Hernandez Cardona, M.A., Tzakum Xicum, Y.A., Giacoman-Vallejos, G. & Quintal-Franco, C.A. (2021). Hybrid constructed wetlands system for domestic wastewater treatment under tropical climate: Effect of recirculation strategies on nitrogen removal. Ecological Engineering, 166, 1, pp.106243. DOI:10.1016/j.ecoleng.2021.106243
  25. Vo, N.X.P., Hoang, D.D.N., Huu, T.D., Van, T.D., Thanh, H.L.P. & Xuan, Q.V.N. (2021). Performance of vertical up-flow-constrcuted wetland integrating with microbial fuel cell (VFCW-MFC) treating ammonium in domestic wastewater. Environment Technology, 1, 1, pp. 1-16. DOI:10.1080/09593330.2021.2014574
  26. Wang, J.F., Song, X.S., Wang, Y.H., Bai, J.H., Li, M.J., Dong, G.Q., Lin, F.D., Lv, Y.F. & Yan, D.H. (2017). Bioenergy generation and rhizodegradation as affected by microbial community distribution in a coupled constructed wetland-microbial fuel cell system associated with three macrophyte. Science of the Total Environment, 607, 1, pp. 53-62. DOI: 10.1016/j.scitotenv.2017.06.243
  27. Xie, T., Jing, Z., Hu, J., Yuan, P., Liu, Y.L. & Cao, S.W. (2018). Degradation of nitrobenzene-containing wastewater by a microbial fuel cell coupled constructed wetland. Ecological Engineering, 112, 1, pp. 65-71. DOI:10.1016/j.ecoleng.2017.12.018
  28. Xu, F., Cao, F.Q., Kong, Q., Zhou, L.I., Yuan, Q., Zhu, Y.J., Wang, Q., Du, Y.D. & Wang, Z.D. (2018). Electricity production and evolution of microbial community in the constructed wetland-microbial fuel cell. Chemical Engineering Journal, 339, pp. 476-486. DOI:10.1016/j.cej.2018.02.003
  29. Yang, S.L., Zheng, Y.F., Mao, Y.X., Xu, L., Jin, Z., Zhao, M., Kong, H.N., Huang, X.F. & Zheng, X.Y. (2021). Domestic wastewater treatment for single household via novel subsurface wastewater infiltration systems (SWISs) with NiiMi process: Performance and microbial community. Journal of Cleaner Production, 279, 1, pp. 123434. DOI:10.1016/j.jclepro.2020.123434
  30. Zhang, D.Q., Jinadasa, K.B.S.N., Gersberg, R.M., Liu, Y., Tan, S.K. & Ng, W.J. (2015). Application of constructed wetlands for wastewater treatment in tropical and subtropical regions (2000-2013). Journal of Environmental Sciences, 30, 1, pp. 30-46. DOI:10.1016/j.jes.2014.10.013
Przejdź do artykułu

Autorzy i Afiliacje

Pimprapa Chaijak
1
ORCID: ORCID
Phachirarat Sola
2

  1. Thaksin University, Thailand
  2. Thailand Institute of Nuclear Technology (Public Organization) (TINT), Thailand
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Liquid chromatography-mass spectrometry was used to detect and analyze phenolic compounds in the surface waters of four urban lakes in Xi’an – Hancheng Lake, Xingqing Lake, Nanhu Lake, and Taohuatan Lake. A total of 5 phenolic compounds were detected from the water samples, with a concentration range of ND-100.32 ng/L, of which bisphenol A (BPA) and nonyl phenol (NP) were the main types of phenolic compounds pollution in the four lakes. Pearson correlation analysis was used to analyze the concentration of phenolic compounds in the lake waters of Xi’an City and the water quality indicators COD, TP, NH3-N, DO, and pH during the same period. It was found that there was a significant positive relationship between the concentration of BPA and COD, the concentration of estradiol (17-beta-E2), estrone (E1) and TP and TN, the concentration of octylphenol (4-t-OP) and pH. The ecological risk assessment (ERA) shows that the concentration of BPA, 4-t-OP and NP in the lakes is at a medium risk level( is between 0.1–1), and that of E1 is at a high risk level (is greater than 1). Female cells (breast cancer cells) and male germ cells (testis cells) of mice were used as research objects to explore BPA and NP Toxic effect on mouse germ cells. BPA and NP at a concentration of 10-8 mol/L were found to have the most value-inducing effect on MCF-7 breast cancer cells positive for estrogen receptor. Obviously, both BPA and NP can induce the proliferation of testicular Sertoli cells
Przejdź do artykułu

Bibliografia

  1. Atieh, Y., Anis, E. & Kiarash, G. (2022). Quantitative evaluation senx3-regx3 gene of Mycobacterium tuberculosis by real-time RT-PCR assays for monitoring the response to anti-TB therapy. Gene Reports, 28, 101642. DOI:10.1016/j.genrep.2022.101642
  2. Biam, R.S., Robichaud, P.P. & Mbarik M. (2022). Loss of detection of fatty acid-metabolizing proteins in Western blot analyses – Impact of sample heating. Biochemical and Biophysical Research Communications, 607, pp. 110-116. DOI:10.1016/j.bbrc.2022.03.130
  3. Chen, M.H., Guo, M. & Liu D. (2017). Occurrence and distribution of typical endocrine disruptors in surface water and sediments from Taihu Lake and its tributaries. China Environmental Science, 37(11), pp. 4323-4332. (in Chinese)
  4. Diao, P.P., Chen, Q. & Wang R. (2017). Phenolic endocrine-disrupting compounds in the Pearl River Estuary: Occurrence, bioaccumulation and risk assessment. Science of The Total Environment, 584–585, pp. 1100-1107. DOI:10.1016/j.scitotenv.2017.01.169.
  5. Dong, J., Sun, L.N. & Chen, R.H. (2009). A study on the pollution of chlorophenol compounds in the surface water of the pearl river estuary area. Environmental Science & Technology, 32(07), pp. 82-85. (in Chinese)
  6. Duan, X.Y., Li, Y.X. & Li, X.G. (2014). Alkylphenols in surface sediments of the Yellow Sea and East China Sea inner shelf: Occurrence, distribution and fate. Chemosphere, 107, pp. 265-273. DOI:10.1016/j.chemosphere.2013.12.054
  7. Fan, Z.L., Hu, J. & An, W. (2013). Detection and occurrence of chlorinated byproducts of bisphenol A, nonylphenol, and estrogens in drinking water of China: Comparison to the parent compounds. Environmental Science&Technology, 47(19), pp. 10841-10850. DOI:10.1021/es401504a
  8. Hernando, M.D., Mezcua, M. & Fernández-Alba, A.R. (2006). Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta, 69(2), pp. 334-342. DOI:10.1016/j.talanta.2005.09.037
  9. Hodaka, K., Hidekazu, O. & Mayuri I. (2004). Endocrine disrupter nonylphenol and bisphenol A contamination in Okinawa and Ishigaki Islands, Japan––within coral reefs and adjacent river mouths. Chemosphere, 55(11), pp. 1519-1527. DOI:10.1016/j.chemosphere.2004.01.032
  10. Hu, S.L., Ji, J.Y. & Chen, R. (2016). Analysis of eutrophication status and causes of urban landscape water body in xi'an. Environmental Monitoring Management and Technology, 28(05), pp. 62-65.(in Chinese)
  11. Kong, M., Bu Y.Q. & Zhang Q. (2021). Distribution, abundance, and risk assessment of selected antibiotics in a shallow freshwater body used for drinking water. China.Journal of Environmental Management, 280, pp. 111738. DOI:10.1016/j.jenvman.2020.111738
  12. Legler, J., Zeinstra, L.M. & Schuitemaker, F. (2002). Comparison of in vivo and in vitro reporter gene assays for short-term screening of estrogenic activity. Environ Sci Technol, 36(20) , pp. 4410-4415. DOI: 10.1021/es010323a
  13. Li, H.J., Li, H.X. & Shi, X.M. (2019). Pollution charasteristics of heavy metals and ecological risk assessment for the surface sediments of the lakes in Xi’an. Resources And Environment In Arid Areas, 33(02), pp. 122-126. DOI:10.13448/j.cnki.jalre.2019.051.(in Chinese)
  14. Liang, J.J. & Gu, A.H. (2021). Multigenerational and cross-generational effect of environmental endocrine disruptors on reproductive system in male animals. Chinese Journal of Public Health, 37(02), pp. 375-380. (in Chinese)
  15. Liu, Q.,Wang, S. & Xu, J.J. (2017). Analysis of phytoplankton community structure and water quality status in Hancheng Lake, Xi'an. Safety and Environmental Engineering, 24(03), pp. 48-56. DOI:10.13578/j.cnki.issn.1671-1556.2017.03.009. (in Chinese)
  16. Liu, Y.H., Zhang, S.H. & Ji, G.X. (2017). Occurrence, distribution and risk assessment of suspected endocrine-disrupting chemicals in surface water and suspended particulate matter of Yangtze River (Nanjing section). Ecotoxicology and Environmental Safety 135, pp. 90-97. DOI:10.1016/j.ecoenv.2016.09.035
  17. Lv, Y.Z., Zhao, J.L. & Yao, L. (2019). Bioaccumulation of phenolic endocrine disrupting chemicals in the plasma of wild fish from Yangtze River, China. Environmental chemistry. 38(03), pp. 443-453. (in Chinese)
  18. Ministry of Ecology and Environment of the People's Republic of China. (2017). Water quality ---determinnation of the chemical oxygen demand-dichromate method. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201704/t20170410_409547.shtml (in Chinese)
  19. Ministry of Ecology and Environment of the People's Republic of China. (2013). Water quality ---determination of total phosphorus-Flow injection analysis (FIA) and ammonium molybdate spectrophotometry. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201311/t20131106_262959.shtml (in Chinese)
  20. Ministry of Ecology and Environment of the People's Republic of China. (2012). Water quality ---determination of total nitrogen-Alkaline potassium persulfate digestion UV spectrophotometric method. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201203/t20120307_224383.shtml (in Chinese)
  21. Ministry of Ecology and Environment of the People's Republic of China. (2009). Water quality ---determination of ammonia nitrogen-Nessler’s reagent spectrophotometry. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/201001/t20100112_184155.shtml (in Chinese)
  22. Ministry of Ecology and Environment of the People's Republic of China.(2009).Water quality ---determination of dissolved oxgen-Electrochemical probe method. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/200911/t20091106_181278.shtml (in Chinese)
  23. Ministry of Ecology and Environment of the People's Republic of China. (2020). Water quality ---determination of pH-Electrode method. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/shjbh/xgbzh/202011/t20201127_810274.shtml (in Chinese)
  24. Ministry of Ecology and Environment of the People's Republic of China. (2009). Water quality sampling---technical regulation of the preservation and handling of samples. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/jcffbz/200910/t20091010_162157.shtml (in Chinese)
  25. Namita, P., Ankita, P. & Mitali, M.S. (2022). A comprehensive review on eco-toxicity and biodegradation of phenolics: Recent progress and future outlook. Environmental Technology & Innovation, 27, 102423. DOI:10.1016/j.eti.2022.102423.
  26. Peranandam, T., Kulanthaivel, L. & Shanmugam, V. (2014). Efficiency of lycopene against reproductive and developmental toxicity of Bisphenol A in male Sprague Dawley rats. Biomedicine & Preventive Nutrition, 4(4), pp. 491-498. DOI:10.1016/j.bionut.2014.07.008
  27. Qiu, L.N., Yun, X. & Na, G.S. (2015). On the bioaccumulation and biomagnification of phenols endocrine disruptors in the organisms in the coast of Northern Yellow Sea. Journal of Safety and Environment, 15(04), pp. 353-357. DOI:10.13637/j.issn.1009-6094.2015.04.074.(in Chinese)
  28. Schultis T. & Metzger J.W. (2004). Determination of estrogenic activity by LYES-assay (yeast estrogen screen-assay assisted by enzymatic digestion with lyticase). Chemosphere, 57(11), pp. 1649-1655. DOI:10.1016/j.chemosphere.2004.06.027
  29. Standnicka, J., Schirmer, K. & Ashauer, R. (2012). Predicting concentrations of organic chemicals in fish by using toxicokinetic models. Environmental Science &Technology, 46(6), pp. 3273-3280. DOI:10.1021/es2043728
  30. Sui, Q., Huang, J. & Yu, G. (2009). Priority Analysis for Controlling Endocrine Disrupting Chemicals in Municipal Wastewater Treatment Plants of China. Environmental Science, 30(02), pp. 384-390. DOI:10.13227/j.hjkx.2009.02.013. (in Chinese)
  31. Sun, Y., Huang, H. & Hu, H.Y. (2010). Concentration and Ecological Risk Level of Estrogenic Endocrine-Disrupting Chemicals in the Effluents from Wastewater Treatment Plants. Environmental Science Research, 23(12), pp. 1488-1493. DOI:10.13198/j.res.2010.12.46.suny.005. (in Chinese)
  32. Takuo, K. & Kunio, K. (1996). Studies on the mechanism of toxicity of chlorophenols found in fish through quantitative structure-activity relationships. Water Research, 30(2), pp. 393-399. DOI:10.1016/0043-1354(95)00152-2
  33. Tan, R.J., Li, Z.S. & Liu, R.X. (2015). PContamination Level of Endocrine Disrupting Compounds in Natural Aquatic Environment. Anhui Agricultural Sciences, 43(23), 167-169+288. DOI:10.13989/j.cnki.0517-6611.2015.23.067. (in Chinese)
  34. Tanaka, H., Yakou, Y. & Takahashi, A. (2001). Comparison between estrogenicities estimated from DNA recombinant yeast assay and from chemical analyses of endocrine disruptors during sewage treatment. Water Sci Technol, 43 (2), pp. 125-132. DOI:10.2166/wst.2001.0081
  35. Tao, S.Y., Wang, L.H. & Zhu, Z.L. (2019). Adverse effects of bisphenol A on Sertoli cell blood-testis barrier in rare minnow Gobiocypris rarus. Ecotoxicology and Environmental Safety, 171, pp. 475-483. DOI:10.1016/j.ecoenv.2019.01.007
  36. Tülay, A.Ö., Önder, H.Ö. & Songül, Z.B. (2002). Removal of phenolic compounds from rubber–textile wastewaters by physico-chemical methods. Chemical Engineering and Processing. Process Intensification, 41(8), pp. 719-730. DOI:10.1016/S0255-2701(01)00189-1
  37. Wang, W. & Kurunthachalam, K. (2018). Inventory, loading and discharge of synthetic phenolic antioxidants and their metabolites in wastewater treatment plants. Water Research, 129, pp. 413-418. DOI:10.1016/j.watres.2017.11.028
  38. Wang, Z, Yang, XH, Fan, D.L. (2017). Ecological Risk Assessment of Triclocarban in Fresh Water of China by Species Sensitivity Distribution. Journal of Ecology and Rural Environment, 33(10), pp. 921-927. (in Chinese)
  39. Wei, H., Wang, J.W. & Yang, X.Y. (2017). Contamination characteristic and ecological risk of antibiotics in surface water of the Weihe Guanzhong section. China Environmental Science, 37(6), pp. 2255-5562. (in chinese)
  40. Yang, M.F., Zou, Y.Q. & Wang, X. (2022). Synthesis of intracellular polyhydroxyalkanoates (PHA) from mixed phenolic substrates in an acclimated consortium and the mechanisms of toxicity. Journal of Environmental Chemical Engineering, 10, (3), 107944. DOI:10.1016/j.jece.2022.107944.
  41. Yin, W., Fan, D.L. & Wang, Z. (2020). Pollution Characteristics and Ecological Risks of 7 Phenolic Compounds of High Concern in the Surface Water and Sediments of Tianjin, China. Asian Journal of Ecotoxicology, 15(01), pp. 230-241. (in Chinese)
  42. Yoel, S., Ann, S. & Monica, S. (2018). The influence of in vivo exposure to nonylphenol ethoxylate 10 (NP-10) on the ovarian reserve in a mouse model. Reproductive Toxicology, 81, pp. 246-252. DOI:10.1016/j.reprotox.2018.08.020
  43. Yousefi, H., Yahyazadeh, A. & Moradi Rufchahi, E.O. (2013). Spectral properties, biological activity and application of new 4-(benzyloxy)phenol derived azo dyes for polyester fiber dyeing. Journal of Molecular Liquids, 180, pp. 51-58. DOI:10.1016/j.molliq.2012.12.030
  44. Zhang, F., Lu, X. & Yang, X.H. (2017). Investigation Report on Water Environment of Hancheng Lake in Xi’an City. Journal of Xi'an University(Natural Science Edition), 20(05), 109-112, 117. (in Chinese)
  45. Zhang, Y.B. (2016). Application of fuzzy comprehensive evaluation method to the assessment of surface water environment quality with the example of surface water environment in Xi’an Qujiang Pool. Journal of Xi'an Shiyou University(Social Science Edition), 25(04), pp. 1-6. (in Chinese)
  46. Zhou, L.J., Ying, G.G. & Liu, S. (2012). Simultaneous determination of human and veterinary antibiotics in various environmental matrices by rapid resolution liquid chromatography electrospray ionization tandem mass spectrometry. Journal of Chromatography A, 1244, pp. 123-138 .DOI:10.1016/j.chroma.2012.04.076
Przejdź do artykułu

Autorzy i Afiliacje

Min Wang
1
Yutong Zhang
1
Jingxin Sun
1
Chen Huang
1
Hongqin Zhai
1

  1. Xi’an University of Technology, China
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

As a rule, nitrates are present in all natural water bodies. Their increased concentrations are connected with the discharge of insufficiently treated wastewater from industrial and communal enterprises, agricultural and livestock complexes. Recent scientific publications concerning treatment methods for nitrates removal from natural water and wastewater were analyzed in order to create effective and low-waste technology for obtaining high quality water. It has been established that the ion exchange method is quite effective for removing nitrates from water. In the paper, the processes of ion exchange removal of nitrates from water on low-axis anionite in DOWEX Marathon WBA in Сl- form were investigated. During the sorption of nitrates with a concentration of 186, 205, 223 and 2200 mg/dm3, it was established that the full exchangeable dynamic capacity was 1.075, 1.103, and 1.195, 1.698 g-eq/dm3, respectively. To regenerate anionite, solutions of ammonia as well as potassium chloride, ammonium chloride and potassium carbonate were used in this work. The choice of potassium and ammonium compounds is due to the prospect of further use of regeneration solutions for the production of liquid fertilizers.
Przejdź do artykułu

Bibliografia

  1. Alguacil-Duarte, F., González-Gómez, F. & Romero-Gámez, M. (2022). Biological nitrate removal from a drinking water supply with an aerobic granular sludge technology: An environmental and economic assessment. Journal of Cleaner Production, 367. DOI:10.1016/j.jclepro.2022.133059
  2. Bodzek, M. (2019). Membrane separation techniques – removal of inorganic and organic admixtures and impurities from water environment – review. Archives of Environmental Protection, 45, 4, pp. 4–19. DOI:10.24425 / aep.2019.130237.
  3. Boubakri, A., Al-Tahar Bouguecha, S. & Hafiane, A. (2022). FO–MD integrated process for nitrate removal from contaminated groundwater using seawater as draw solution to supply clean water for rural communities. Separation and Purification Technology, 298. DOI:10.1016/j.seppur.2022.121621
  4. Gutiérrez, M., Biagioni, R.N., Alarcón-Herrera, M.T. & Rivas- Lucero, B.A. (2018). An overview of nitrate sources and operating processes in arid and semiarid aquifer systems. Science of the Total Environment, 624, pp. 1513–1522. DOI:10.1016/j. scitotenv.2017.12.252
  5. Hansen, B., Sonnenborg, T.O., Møller, I., Bernth, J.D., Høyer, A., Rasmussen, P., Sandersen P.B.E. & Jørgensen, F. (2016). Nitrate vulnerability assessment of aquifers. Environmental Earth Sciences, 75, 12. DOI:10.1007/s12665-016-5767-2
  6. Kaushal, S.S. (2016). Increased salinization decreases safe drinking water. Environ. Sci. Technol., 50, pp. 2765–2766. doi:10.1021/ acs.est.6b00679.
  7. Królak, E. & Raczuk, J. (2018). Nitrate concentration-related safety of drinking water from various sources intended for consumption by neonates and infants. Archives of Environmental Protection, 44, 1, pp. 3–9. DOI:10.24425/118176
  8. National report on drinking water quality and drinking water supply in Ukraine in 2021. Database ‘Ministry of Regional Development of Ukraine’ (in Ukrainian).
  9. Nujić, M., Milinković, D. & Habuda-Stanić, M. (2017). Nitrate removal from water by ion exchange. Croatian journal of food science and technology, 9, 2, pp. 182–186. DOI:10.17508/ CJFST.2017.9.2.15
  10. Preetham, V. & Vengala, J. (2023). Adsorption isotherm, kinetic and thermodynamic studies of nitrates and nitrites onto fish scales. In Recent Advances in Civil Engineering, pp. 429–442. doi:10.1007/978-981-19-1862-9_27
  11. Remeshevska, I., Trokhymenko, G., Gurets, N., Stepova, O., Trus, I. & Akhmedova, V. (2021). Study of the ways and methods of searching water leaks in water supply networks of the settlements of Ukraine. Ecological Engineering and Environmental Technology, 22, 4, pp. 14–21. DOI:10.12912/27197050/137874
  12. Song, Q., Zhang, S., Hou, X., Li, J., Yang, L., Liu, X. & Li, M. (2022). Efficient electrocatalytic nitrate reduction via boosting oxygen vacancies of TiO2 nanotube array by highly dispersed trace cu doping. Journal of Hazardous Materials, 438. DOI:10.1016/j. jhazmat.2022.129455
  13. Trus, I., Gomelya, M., Skiba, M., Pylypenko, T. & Krysenko, T. (2022). Development of Resource-Saving Technologies in the use of sedimentation inhibitors for reverse osmosis installations. J. Ecol. Eng., 23(1), pp. 206–215. DOI:10.12911/22998993/144075
  14. Trus, I. (2022). Optimal conditions of ion exchange separation of anions in low-waste technologies of water desalination. Journal of Chemical Technology and Metallurgy, 57, 3, pp. 550–558.
  15. Trusa, I. M., Gomelya, M. D. & Tverdokhlib, M. M. (2021). Evaluation of the contribution of ion exchange in the process of demanganization with modified cation exchange resin ku-2- 8. Journal of Chemistry and Technologies, 29, 4, pp. 540–548. DOI:10.15421/jchemtech.v29i4.242561
  16. Trus, I. & Gomelya, M. (2022). Low-waste technology of water purification from nitrates on highly basic anion exchange resin. Journal of Chemical Technology and Metallurgy, 57, 4, pp. 765–772. https://dl.uctm.edu/journal/node/j2022-4/14_21- 93_br4_2022_pp765-772.pdf
  17. Trusb, I., Gomelya, M., Skiba, M. & Vorobyova, V. (2021). Promising method of ion exchange separation of anions before reverse osmosis. Archives of Environmental Protection, 47, 4, pp. 93–97. DOI:10.24425/aep.2021.139505
  18. Trus, I., Gomelya, N., Halysh, V., Radovenchyk, I., Stepova, O. & Levytska, O. (2020). Technology of the comprehensive desalination of wastewater from mines. Eastern-European Journal of Enterprise Technologies, 3(6–105), pp. 21–27. DOI:10.15587/1729-4061.2020.206443 Vasilache, N., Cruceru, L., Petre, J., Chiriac, F. L., Paun, I., Niculescu, M., Pirvu F. & Lupu, G. (2018). The removal of nitrate from drinking water, natural water by ion exchange using ion exchange resin, purolite A520E and A500. Iternational Symposium “The Environment and the Industry”, SIMI 2018, Proceedings Book DOI:10.21698/simi.2018.fp53 Voutchkova, D.D., Schullehner, J., Rasmussen, P. & Hansen, B. (2021). A high-resolution nitrate vulnerability assessment of sandy aquifers (DRASTIC-N). Journal of Environmental Management, 277. DOI:10.1016/j.jenvman.2020.111330 Ward, M.H., Jones, R.R., Brender, J.D., de Kok, T.M., Weyer, P. J., Nolan, B. T., Vilanueva C.M. & van Breda, S.G. (2018). Drinking water nitrate and human health: An updated review. International Journal of Environmental Research and Public Health, 15, 7. DOI:10.3390/ijerph15071557 Wiśniowska, E. & Włodarczyk-Makuła, M. (2020). Removal of nitrates and organic compounds from aqueous solutions by zero valent (ZVI) iron reduction coupled with coagulation/ precipitation process. Archives of Environmental Protection, 46, 3, pp. 22–29. DOI: 10.24425 / aep.2020.134532.
  19. Zabłocki, S., Murat-Błażejewska, S., Trzeciak, J.A. & Błażejewski, R. (2022). High-resolution mapping to assess risk of groundwater pollution by nitrates from agricultural activities in Wielkopolska Province. Poland. Archives of Environmental Protection, 48, 1, pp. 41–57. DOI:10.24425/aep.2022.140544
Przejdź do artykułu

Autorzy i Afiliacje

Inna Trus
1
ORCID: ORCID
Mukola Gomelya
1
ORCID: ORCID
Vita Halysh
1
ORCID: ORCID
Mariia Tverdokhlib
1
ORCID: ORCID
Iryna Makarenko
1
Tetiana Pylypenko
1
ORCID: ORCID
Yevhen Chuprinov
2
ORCID: ORCID
Daniel Benatov
1
ORCID: ORCID
Hennadii Zaitsev
2

  1. National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine
  2. State University of Economics and Technology: Kryvyi Rih, Ukraine
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The uncertainty in the supply of crude oil, increasing the number of vehicles and rising air pollution, especially in urban areas, has prompted us to look for alternative fuels. It is understood that using Compressed Natural Gas (CNG) in IC engines could be a mid-term solution to these problems. It is well established that CNG has better combustion characteristics and low emissions compared to conventional gasoline and diesel fuel. In the present study, an experiment was conducted to evaluate the engine performance and exhaust emissions using various percentages of CNG in dual fuel mode. CNG was mixed in the intake manifold’s air stream, and diesel was injected after the compression of the CNG air mixture. This paper presents experimental results of 40%,60%, and 80% CNG in the air stream. Engine performance and emissions are presented and discussed at a speed of 1200 rpm to 1500 rpm in steps of 50 rpm. The results of the experiments showed that adding CNG to diesel engines in dual-fuel combustion significantly impacted performance and emissions. Compared to single diesel fuel combustion, dual fuel combustion increases brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) at all CNG energy shares and engine speeds. Carbon monoxide (CO) and hydrocarbon (HC) emissions were increased, while nitrogen oxide (NOX) and smoke opacity were decreased in dual fuel combustion compared to single diesel fuel.
Przejdź do artykułu

Bibliografia

  1. Bari, S. & Hossain, S.N. (2019). Performance of a diesel engine run on diesel and natural gas in dual-fuel mode of operation. Energy Procedia, 160, pp. 215–222. DOI:10.1016/j.egypro.2019.02.139
  2. Gharehghani, A., Hosseini, R., Mirsalim, M., Jazayeri, S.A. & Yusaf, T. (2015). An experimental study on reactivity-controlled compression ignition engine fueled with biodiesel/natural gas. Energy, 89, pp. 558–567. DOI:10.1016/j.energy.2015.06.014
  3. Jamrozik, A., Tutak, W. & Grab-Rogaliński, K. (2019). An experimental study on the performance and emission of the diesel/CNG dual-fuel combustion mode in a stationary CI engine. Energies, 12(20), 3857. DOI:10.3390/en12203857
  4. Johnson, D.R., Heltzel, R., Nix, A.C., Clark, N. & Darzi, M.(2017). Greenhouse gas emissions and fuel efficiency of in-use high horsepower diesel, dual fuel, and natural gas engines for unconventional well development. Applied energy, 206, pp. 739–750. DOI:10.1016/j.apenergy.2017.08.234
  5. Kalghatgi, G.T. (2014). The outlook for fuels for internal combustion engines. International Journal of Engine Research, 15(4), pp. 383–398. DOI:10.1177/1468087414526189
  6. Lee, S., Kim, C., Lee, S., Lee, J. & Kim, J. (2020). Diesel injector nozzle optimization for high CNG substitution in a dual-fuel heavy-duty diesel engine. Fuel, 262, 116607. DOI:10.1016/j. fuel.2019.116607
  7. McTaggart-Cowan, G.P., Jones, H.L., Rogak, S.N., Bushe, W.K., Hill, P.G. & Munshi, S.R. (2005, January). The effects of high-pressure injection on a compression-ignition, direct injection of natural gas engine. In Internal combustion engine division fall technical conference, Vol. 47365, pp. 161–173. DOI:10.1115/ICEF2005-1213
  8. Pathak, S.K., Nayyar, A. & Goel, V. (2021). Optimization of EGR effects on performance and emission parameters of a dual fuel (Diesel+ CNG) CI engine: An experimental investigation. Fuel, 291, 120183. DOI:10.1016/j.fuel.2021.120183
  9. Rai, A.A., Bailkeri, N.K. & BR, S.R. (2021). Effect of injection timings on performance and emission Characteristics of CNG diesel dual fuel engine. Materials Today: Proceedings, 46, pp. 2758–2763. DOI:10.1016/j.matpr.2021.02.509
  10. Shim, E., Park, H. & Bae, C. (2018). Intake air strategy for low HC and CO emissions in dual-fuel (CNG-diesel) premixed charge compression ignition engine. Applied energy, 225, pp. 1068–1077. DOI:10.1016/j.apenergy.2018.05.060
  11. Stelmasiak, Z., Larisch, J., Pielecha, J. & Pietras, D. (2017). Particulate matter emission from dual fuel diesel engine fuelled with natural gas. Polish Maritime Research. DOI:10.1515/pomr-2017-0055
  12. Stelmasiak, Z., Larisch, J. & Pietras, D. (2017). Issues related to naturally aspirated and supercharged CI engines fueled with diesel oil and CNG gas. Combustion Engines, 56. DOI:10.19206/ CE-2017-205
  13. Tripathi, G., Sharma, P. & Dhar, A. (2020). Effect of methane augmentations on engine performance and emissions. Alexandria Engineering Journal, 59(1), pp. 429–439. DOI:10.1016/j. aej.2020.01.012
  14. Wang, Z., Zhang, F., Xia, Y., Wang, D., Xu, Y. & Du, G. (2021). Combustion phase of a diesel/natural gas dual fuel engine under various pilot diesel injection timings. Fuel, 289, 119869. DOI:10.1016/j.fuel.2020.119869
  15. Wei, L. & Geng, P. (2016). A review on natural gas/diesel dual fuel combustion, emissions and performance. Fuel Processing Technology, 142, pp. 264–278. DOI:10.1016/j. fuproc.2015.09.018
  16. Wyrwa, A. (2010). Towards an integrated assessment of environmental and human health impact of the energy sector in Poland. Archives of Environmental Protection, 36(1) pp. 41–48.
  17. Yousefi, A., Guo, H. & Birouk, M. (2018). Effect of swirl ratio on NG/diesel dual-fuel combustion at low to high engine load conditions. Applied Energy, 229, pp. 375–388. DOI:10.1016/j. apenergy.2018.08.017
  18. Yousefi, A., Guo, H. & Birouk, M. (2019). Effect of diesel injection timing on the combustion of natural gas/diesel dual-fuel engine at low-high load and low-high speed conditions. Fuel, 235, pp. 838–846. DOI:10.1016/j.fuel.2018.08.064
  19. Zwierzchowski, R. & Różycka-Wrońska, E. (2021). Operational determinants of gaseous air pollutants emissions from coal-fired district heating sources. Archives of Environmental Protection, 47(3), pp. 108–119. DOI 10.24425/aep.2021.138469
Przejdź do artykułu

Autorzy i Afiliacje

Neeraj Kumar
1
ORCID: ORCID
Bharat Bhushan Arora
ORCID: ORCID
Sagar Maji
1
ORCID: ORCID

  1. Delhi Technological University, Delhi, India
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Many paper-related products are in daily use all over the world. Although paper is one of the most recycled materials in the European Union, no end-of-waste criteria have been defi ned. Typical paper and cardboard should be recycled, but paper materials with impurities, such as cooking oil, sand, or plastic, are much more problematic. In particular, paper contaminated with cooking oil or butter (e.g., pizza boxes) is diffi cult waste. Also baking parchment paper cannot be stored as waste paper after use. Composting could be a solution, but in many municipal solid waste collection systems, this waste types are collected with the mixed waste stream, what fi nally leads this material to landfi lling or incinerating processes. Parchment paper and pizza box cardboard contain a lot of cellulose and in landfi lls are a source of CO2 and CH4. Incineration of these materials also leads to CO2 emission. The aim of this study was to investigate the degradation of cooking-oil-contaminated paper in media with a low inorganic nitrogen content. Cardboard usually used for packaging purposes was used as pre-test material. Two types of paper usually used in the kitchen were used: pizza box cardboard and parchment paper highly contaminated with cooking oil. Two types of low inorganic nitrogen media were tested: mature municipal waste compost (MSWC) and leaf mold (LM). The decrease of mass of both paper sample types was correlated with process time. Both tested sample types: dry cellulose materials and paper with cooking oil added, were partly or completely decomposed after 6 weeks of bioprocessing in aerobic conditions without an additional dose of inorganic nitrogen. According to waste separation rules, wet paper or paper contaminated with cooking oil have to be stored with other wastes which are „not possible for further use”. This work show possibility to change these rules.
Przejdź do artykułu

Bibliografia

  1. Agarwal, G., Liu, G. & Lattimer, G. (2014) Pyrolysis and Oxidation of Cardboard. Fire safety science-proceedings of the eleventh international symposium. pp. 124–137. DOI:10.3801/IAFSS. FSS.11-124
  2. Ahmed, S., Hall, A.M. & Ahmed, S.F. (2018) Biodegradation of Different Types of Paper in a Compost Environment. Proceedings of the 5th International Conference on Natural Sciences and Technology (ICNST’18) March 30–31, Asian University for Women, Chittagong, Bangladesh.
  3. Al-Mutairi, N. (2009) Co-composting of manure with fat, oil, and grease: Microbial fingerprinting and phytotoxicity evaluation. Can. J. Civ. Eng. 36(2) pp. 209–218. DOI:10.1139/L08-117
  4. Aluyor, E.O., Obahiagbon, K.O. & Ori-jesu, M. (2009) Biodegradation of vegetable oils: A review. Scientific Research and Essay, 4(6), pp. 543–54.
  5. Andlar, M., Rezic, T., Mardetko, M., Kracher, D., Ludwig, R. & Santek B. (2018) Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation. Engineering in Life Sciences, 18 pp. 768–778. DOI:10.1002/ elsc.201800039
  6. Balada, I., Altmann, V. & Šařec, P. (2016) Material waste paper recycling for the production of substrates and briquettes. Agronomy Research 14(3), pp. 661–671.
  7. Bekiroğlu, S., Elmas, G.M. & Yagshiyev, Y. (2017) Contribution to Sustainability and the National Economy Through Recycling Waste Paper from Istanbul’s Hotels in Turkey. BioResources, 12(4), pp. 6924–6955. DOI:10.15376/biores.12.4.6924-6955
  8. Bogaard, J. & Whitmore, P.M. (2002) Explorations of the role of humidity fluctuations in the deterioration of paper. Studies in Conservation, 47(3), pp. 11–15. DOI:10.1179/sic.2002.47.s3.003
  9. Borrego, S., Gómez de Saravia, S., Valdés, O., Vivar, I., Battistoni, P. & Guiamet, P. (2016) Biocidal activity of two essential oils on fungi that cause degradation of paper documents. International Journal of Conservation Science, 7(2), pp. 369–380.
  10. Cichosz, G. & Czeczot, H. (2011) Oxidative stability of edible fats – consequences to human health. Bromat. Chem. Toksykol. XLIV, 1, pp. 50–60
  11. Ciesielczuk, T., Poluszyńska, J., Rosik-Dulewska, Cz., Sporek, M. & Lenkiewicz, M. (2016). Uses of weeds as an economical alternative to processed wood biomass and fossil fuels. Ecological engineering, 95, pp. 485–491. DOI:10.1016/j.ecoleng.2016.06.100
  12. Cuvelier, M.E., Soto, P., Courtois, F., Broyart, B. & Bonazzi, C. (2017) Oxygen solubility measured in aqueous or oily media by a method using a non-invasive sensor. Food Control, 73, part 3, pp. 1466–1473. DOI:10.1016/j.foodcont.2016.11.008
  13. Franica, M., Grzeja, K. & Paszula, S. (2018) Evaluation of quality parameters of selected composts. Archives of Waste Management and Environmental Protection, 20(1), pp. 21–32.
  14. Ghehsareh, M.G., Khosh-Khui, M. & Nazari, F. (2011) Comparison of Municipal Solid Waste Compost, Vermicompost and Leaf Mold on Growth and Development of Cineraria (Pericallis × hybrida ‘Star Wars’). Journal of Applied Biological Sciences, 5 (3), 55–58.
  15. Gumienna, M., & Czarnecki, Z. (2010). The surface-active compounds of microbiological origin. Nauka Przyr. Technol., 4, 4, #51. (in Polish)
  16. Kaakinen, J., Vahaoja, P., Kuokkanen, T. & Roppola, K. (2007) Studies on the Effects of Certain Soil Properties on the Biodegradation of Oils Determined by the Manometric Respirometric Method. J. Automated Methods and Management in Chemistry, 034601. DOI:10.1155/2007/34601
  17. Karahan, S. (2020) Investigation of Recycling Possibilities of Stacked Waste Office Paper for at Least Five Years. GUSTIJ, 10(2) pp. 366 – 373. DOI:10.17714/gumusfenbil.606061
  18. Li, Z., Wrenn, B.A. & Venosa, A.D. (2005) Anaerobic biodegradation of vegetable oil and its metabolic intermediates in oil-enriched freshwater sediments. Biodegradation 16, pp. 341–352. DOI:10.1007/s10532-004-2057-6
  19. Micales, J.A., & Skog, K.E. (1997) The Decomposition of Forest Products in Landfills. International Biodeterioration & Biodegradation, 39, 2–3, pp. 145–158.
  20. Nowińska, A., Baranowska, J. & Malinowski, M. (2019) The analysis of biodegradation process of selected paper packaging waste. Infrastructure And Ecology Of Rural Areas 3, pp. 253–261. DOI:10.14597/INFRAECO.2019.3.1.018
  21. Osono, T. (2019) Functional diversity of ligninolytic fungi associated with leaf litter decomposition. Ecological Research, 35, pp.30–43. DOI:10.1111/1440-1703.12063
  22. Ozimek, A. & Kopeć, M. (2012). Assessment of biological activity of biomass at different stages of composting process with use of the oxitop control measurement system. Acta Agrophysica, 19(2), 379–390.
  23. Perez, J., Munoz-Dorado, J., Rubia, T. & d.l. Martınez, J. (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. International Microbiology, 5 (2), pp. 53–63. DOI:10.1007/s10123-002- 0062-3
  24. Poluszyńska, J., Ciesielczuk, T., Biernacki, M. & Paciorkowski M. (2021) The effect of temperature on the biodegradation of different types of packaging materials under test conditions. Archives of Environmental Protection, 47(4), pp. 74–83. DOI:10.24425/aep.2021.139503
  25. Rajae, A., Ghita, A.B., Souabi, S., Winterton, P., Cegarra, J. & Hafidi M. (2008) Aerobic biodegradation of sludge from the effluent of a vegetable oil processing plant mixed with household waste: Physical–chemical, microbiological, and spectroscopic analysis. Bioresource technology, 99(18), pp. 8571–8577. DOI:10.1016/j. biortech.2008.04.007
  26. Saletes, S., Siregar, F.A., Caliman, J.P. & Liwang, T. (2004) Ligno- Cellulose Composting: Case Study on Monitoring Oil Palm Residuals. Compost Science & Utilization, 12(4), pp. 372–382. DOI:10.1080/1065657X.2004.10702207
  27. Salihu, I., Mohd, Y.S., Nur, A.Y. & Siti, A.A. (2018) Microbial degradation of vegetable oils: a review, 3, pp. 45–55.
  28. Smirnova. I.E. & Saubenova, M.G. (2001) Use of Cellulose- -Degrading Nitrogen-Fixing Bacteria in the Enrichment of Roughage with Protein. Applied Biochemistry and Microbiology, 37(1), pp. 76–79.
  29. Wan Razali, W.A., Baharuddin, A.S., Talib, A.T., Sulaiman, A., Naim, M.N., Hassan, M.A. & Shirai, Y. (2012) Degradation of oil palm empty fruit bunches (OPEFB) fibre during composting process using in-vessel composter. Bioresources, 7(4), pp. 4786–4805.
  30. Wołczyński, M. & Janosz-Rajczyk, M. (2014) Influence of Initial Alkalinity of Lignocellulosic Waste on Their Enzymatic Degradation. Archives of Environmental Protection, 40(2), pp. 103–113. DOI:10.2478/aep-2014-0019
Przejdź do artykułu

Autorzy i Afiliacje

Tomasz Ciesielczuk
1
ORCID: ORCID
Czesława Rosik-Dulewska
2
ORCID: ORCID

  1. Opole University, Poland
  2. Institute of Environmental Engineering, Polish Academy of Sciences, Zabrze, Poland
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

There are currently large quantities of heterogeneous contaminated sites and the in-situ thermal conductive heating (TCH) technology have been widely used in soil remediation. Some engineering cases have shown that when soil remediation of heterogeneous sites use TCH technology, the gases carrying contaminants migrate laterally and contaminate clean areas. However, there are relatively few domestic studies on this phenomenon. Some international scholars have confirmed the occurrence of this phenomenon on the laboratory scale, but have not proposed an effective solution to the above scientific question. This study first introduced the heating mechanism and heating process of TCH. Meanwhile, the forms and transformation mechanism of organic contaminants were fully expounded during soil remediation by TCH. In addition, the formation, migration, accumulation, and lateral diffusion of gaseous contaminants were comprehensively reviewed during the in-situ thermal desorption of heterogeneous strata. Finally, arrangement methods of extraction pipes to effectively capture gas are provided for the heterogeneous contaminated soils remediated by TCH. The results of this study will provide theoretical and technical support for in-depth understanding of steam movement in heterogeneous formations and the remediation of heterogeneous contaminated sites by TCH technology.
Przejdź do artykułu

Bibliografia

  1. Baker, R. & Heron, G. (2004). In-Situ delivery of heat by thermal conduction and steam injection for improved DNAPL remediation.TerraTherm, Inc., Fitchburg USA2004.
  2. Baker, R., Lachance, J. & Heron, G. (2006). In-pile thermal desorption of PAHs, PCBs and dioxins/furans in soil and sediment. Land Contamination & Reclamation, 14(2), pp. 620–624. DOI:10.2462/09670513.731
  3. Biache, C., Mansuy-Huault, L., Faure, P., Munier-Lamy, C. & Leyval, C. (2008). Effects of thermal desorption on the composition of two coking plant soils:impact onsolvent extractable organic compounds and metal bioavailability. Environmental Pollution, 3, pp. 671–677. DOI:10.1016/j.envpol.2008.06.020
  4. Bonnard, M., Devin, S., Leyval, C., Morel, J.L. & Vasseur, P. (2010). The influence of thermal desorption on genotoxicity of multipolluted soil. Ecotoxicology and Environmental Safety, 73, pp. 955–960. DOI:10.1016/j.ecoenv.2010.02.02
  5. Brooks, M.C., Wise, W.R. & Annable, M.D. (1999). Fundamental changes in in situ air sparging how patterns. Groundwater Monitoring & Remediation, 19(2), pp. 105–113. DOI:10.1111/j.1745-6592.1999.tb00211.x
  6. Burghardt, J.M. & Kueper, B.H. (2008). Laboratory study evaluating heating of tetrachloroethylene impacted soil. Groundwater Monitoring & Remediation, 28(4), pp. 95–106. DOI:10.1111/ j.1745-6592.2008.00214.x
  7. Carey, V.P. (2007). Liquid-Vapor Phase-change Phenomena, second ed. Taylor and Francis, New York 2007. Cébron, A., Cortet, J., Criquet, S., Biaz, A., Calvert, V., Caupert, C., Pernin, C. & Leyval, C. (2011). Biological functioning of PAHpolluted and thermal desorption-treated soils assessed by fauna and microbial bioindicators. Research in Microbiology, 162, pp. 896–907. DOI:10.1016/j.resmic.2011.02.011
  8. Chiou, C.T., Porter, P.E. & Schmedding, D.W. (1983). Partition equilibria of nonionic organic compounds between soil organic matter and water. Environmental science & technology, 17, pp. 27–231, DOI:10.1021/es00110a009
  9. Chen, F., Freedman, D.L., Falta, R.W. & Murdochb, L.C. (2012). Henry’slaw constants of chlorinated solvents at elevated temperatures. Chemosphere, 86(2), pp. 156–165. DOI:10.1016/j. chemosphere.2011.10.004
  10. Geistlinger, H., Krauss, G., Lazik, D. & Luckner, L. (2006). Direct gas injection into saturated glass beads: Transition from incoherent to coherent gas flow pattern. Water Resources Research, 42, W07403. DOI:10.1029/2005WR004451
  11. Hegele, P.R. & Mumford, K.G. (2014) Gas production and transport during bench-scale electrical resistance heating of water and trichloroethene. Journal of Contaminant Hydrology, 165, pp. 24–36, DOI:10.1016/j.jconhyd.2014.07.002
  12. Heron, G., Bierschenk, J., Swift, R., Watson, R. & Kominek, M. (2016). Thermal DNAPL source zone treatment impact on a CVOC plume. Groundwater Monitoring & Remediation, 36(1), pp. 26–37. DOI:10.1111/gwmr.12148
  13. Heron, G., Carroll, S. & Nielsen, S.G. (2005). Full-scale removal of DNAPL constituents using steam enhanced extraction and electrical resistance heat. Groundwater Monitoring & Remediation, 25(4), pp. 92–107. DOI:10.1111/j.1745- 6592.2005.00060.x
  14. Heron, G., Lachance, J. & Baker R. (2013). Removal of PCE DNAPL from tight clays using in situ thermal desorption. Groundwater Monitoring & Remediation, 3(4), pp. 31–43. DOI:10.1111/ gwmr.12028
  15. Heron, G., Parker, K., Galligan, J. & Holmes, T.C. (2009). Thermal treatment of 8 CVOC source areas to near nondetect concentrations. Groundwater Monitoring & Remediation, 29(3), pp. 56–65. DOI:10.1111/j.1745-6592.2009.01247.
  16. Hicknell, B.N., Mumford, K.G. & Kueper, B.H. (2018). Laboratory study of creosote removal from sand at elevated temperatures. Contam Hydrol, 219, pp. 40–49. DOI:10.1016/j. jconhyd.2018.10.00
  17. Hiester, U., Muller, M., Koschitzky, H. & Trötschler, O. (2013). In situ thermal treatment for source zone remediation of soil and groundwater. British Medical Journal, 31, pp. 482–484.
  18. Janfada, T.S., Class, H., Kasiri, N. & Dehghani, M.R. (2020). Comparative experimental study on heat-up efficiencies during injection of superheated and saturated steam into unsaturated soil. International Journal of Heat and Mass Transfer, 158, 119235. DOI:10.1016/j.ijheatmasstransfer.2019.119235
  19. Jones, S.F., Evans, G.M. & Galvin K.P. (1999). Bubble nucleation from gas cavities – a review. Adv. Colloid Interfac, 80, pp. 27–50. DOI:10.1016/S0001-8686(98)00074-8
  20. Kueper, B.H. & McWhorter, D.B. (1991). The behaviour of dense, nonaqueous phase liquids in fractured clay and rock. Ground Water, 29(5), pp. 716–728. DOI:10.1111/j.1745-6584.1991. tb00563.
  21. Kunkel, A.M., Seibert, J.J., Elliott, L.J., Kelley, R., Katz, L.E. & Pope, G.A. (2006). Remediation of elemental mercury using in situ thermal desorption(ISTD). Environmental Science & Technology, 40(7), pp. 2384–2389. DOI:10.1021/es050358
  22. Li, K. & Horne, R.N. (2002). A capillary model for geothermal reservoirs. Proceedings of the GRC 2002 Annual Meeting,September 23–25, 2002, Reno, USA: Geothermal Resources Council Trans.
  23. Magdalena. M.K., Mumford, K.G., Johnson, R.L. & Sleep, B.E. (2011) Modeling discrete gas bubble formation and mobilization during subsurface heating of contaminated zones. Advances in Water Resources, 34, PP. 537–549. DOI:10.1016/j. advwatres.2011.01.010
  24. Martin, E.J. & Kueper, B.H. (2011). Observation of trapped gas during electrical resistance heating of trichloroethylene under passive venting conditions. Journal of Contaminant Hydrology, 126, pp. 291–300. DOI:10.1016/j.jconhyd.2011.09.004
  25. Martin, E.J., Mumford, K.G. & Kueper, B.H. (2016). Electrical resistance heating of clay layers in water-saturated sand. Groundwater Monitoring & Remediation, 36(1), pp. 54–61. DOI:10.1111/gwmr.12146
  26. Martin, E.J., Mumford, K.G, Kueper, B.H. & Siemens, G.A. (2017). Gas formation in sand and clay during electrical resistance heating. International Journal of Heat and Mass Transfer, 110, pp. 855–862. DOI:10.1016/j.ijheatmasstransfer.2017.03.056
  27. Mumford, K.G., Martin, E.J. & Kueper, B.H. (2021). Removal of trichloroethene from thin clay lenses by electrical resistance heating: Laboratory experiments and the effects of gas saturation. Journal of Contaminant Hydrology, 243, 103892. DOI:10.1016/J. JCONHYD.2021.103892
  28. Mumford, K.G., Smith, J.E. & Dickson, S.E. (2008). Mass flux from a non-aqueous phase liquid pool considering spontaneous expansion of a discontinuous gas phase. Journal of Contaminant Hydrology, 98, pp. 85–96. DOI:10.1016/j.jconhyd.2008.02.007
  29. Munholland, J.L. (2015) Electrical resistance heating of groundwater impacted by chlorinated solvents in heterogeneous sand. ProQuest Dissertations. Munholland, J.L., Mumford, K.G. & Kueper, B.H. (2016). Factors affecting gas migration and contaminant redistribution in heterogeneous porous media subject to electrical resistance heating. Journal of Contaminant Hydrology, 184, pp. 14–24. DOI:10.1016/j.jconhyd.2015.10.011
  30. Netzeva, T.I., Aptula, A.O., Chaudary, S.H., Duffy, J.C., Schultz, T.W., Schűrmann, G. & Cronin, M.T.D. (2003). Structure-Activity Relationships for the Toxicity of Substituted Poly-Hydroxylated. Benzenes to Tetrahymena Pyriformis: influence of Free Radical Formation. Qsar & Combinatorial Science, 22(6), pp. 575–582.
  31. Nilsson, B., Tzovolou, D., Jeczalik, M., TomaszKasela, T., Slack,W., Klint, K.E., Haeseler, F. & Tsakiroglou, D.C. (2011). Combining steam injection with hydraulic fracturing for the in-situ remediation of the unsaturated zone of a fractured soil polluted by jet fuel. Journal of Environmental Management, 92. DOI:10.1016/j.jenvman.2010.10.004
  32. Oberle. D. & Kluger, M. (2015). In situ remediation of 1, 4-dioxane using electrical resistance heating. Remediation Journal, 25(2), pp. 35–42. DOI:10.1002/rem.21422
  33. O’Carroll, D.M. & Sleep, B.E. (2007). Hot water flushing for immiscible displacement of a viscous NAPL. Journal of Contaminant Hydrology, 91, pp. 47–266. DOI:10.1016/j.jconhyd.2006.11.003
  34. Schwarzenbach, R.P., Gschwend, P.M. & Imboden, D.M. (2003). Environmental Organic Chemistry, JohnWiley &Sons, New Jersey2003. Scriven, L.E. (1959). On the dynamics of phase growth. Chemical Engineering Science, 10, PP. 1–13, DOI:10.1016/0009- 2509(59)80019-1
  35. Sinnott, R.K. (2005). Coulson’s and Richardson’s Chemical Engineering, Chemical Engineering Design. Elsevier Inc., UK2005.
  36. Sleep, B.E. & Ma, Y.F. (1997). Thermal variation of organic fluid properties and impact on thermal remediation feasibility. Journal of Soil Contamination, 6(3), pp. 281–306. DOI:10.1080/15320389709383566
  37. Smith, J.M. & Van Ness, H.C. (1987). Introduction to Chemical Engineering Thermodynamics. Mc-Graw Hill, Inc., New York 1987.
  38. Sun, H., Yang, X.R., Xie, J.Y. & Zhao, Y.S. (2021). Remediation of Diesel-Contaminated Aquifers Using Thermal Conductive Heating Coupled With Thermally Activated Persulfate. Water Air Soil Pollut, 232: 293. DOI:10.1007/s11270-021-05240-x
  39. Suthersan. S.S., Horst. J., Schnobrich. M., Welty, N. & McDonough, J. (2016). Remediation Engineering-Design Concepts Second Edition, CRC Press, Boca Raton 2016.
  40. Tang, S., Wang, X., Mao, Y., Zhao, Y., Yang, H. & Xie, Y.F. (2015). Effect of dissolved oxygen concentration on iron efficiency: removal of three chloroacetic acids. Water Research, 73, pp. 342–352. DOI:10.1016/j.watres.2015.01.02
  41. Triplett Kingston,J.L., Dahlen, P.R. & Johnson, P.C. (2010). State-of- -the-practice review of in situ thermal technologies. Groundwater Monitoring & Remediation, 30 (4), pp. 64–72. DOI:10.1111/ j.1745-6592.2010.01305.x
  42. Triplett Kingston, J.L., Johnson, P.C., Kueper, B.H. & Mumford, K.G. (2014). In situ thermal treatment of chlorinated solvent source zones. Chlorinated Solvent Source Zone Remediation, 7, pp. 509–557.
  43. Udell, K.S. (1996). Heat and mass transfer in clean-up of underground toxic wastes. In Annual Reviews of Heat Transfer, 7, pp. 333–405. DOI:10.1615/AnnualRevHeatTransfer.v7.80.
  44. Vermeulen, F. & McGee, B. (2000). In situ electromagnetic heating for hydrocarbon recovery and environmental remediation. J Can. Pet. Technol, 39(8), pp. 24–28. DOI:10.2118/00-08-DAS
  45. Voort, M., Kempenaar, M., Driel, M., Raaijmakers, M.J. & Mendes, R. (2016). Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression. Ecology Letters, 19(4), pp. 375–382. DOI:10.1111/ele.12567
  46. Zhao, C., Mumford, K.G. & Kueper, B.H. (2014). Laboratory study of non-aqueous phase liquid and water co-boiling during thermal treatment. Journal of Contaminant Hydrology, 164, pp. 49–58. DOI:10.1016/j.jconhyd.2014.05.008
Przejdź do artykułu

Autorzy i Afiliacje

Wei Ji
1
Rong-Bing Fu
1
Cai-Hong Gao
1
Jia-Bin Yao
1

  1. State Key Laboratory of Pollution Control and Resources Reuse,College of Environmental Science and Engineering, Tongji University, Shanghai 200092, ChinaCentre for Environmental Risk Management and Remediation of Soil and Groundwater,Tongji University, Shanghai 200092, China
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

The coronavirus disease 2019 (COVID-19) pandemic has wreaked havoc especially in 2020 and the first half of 2021 and has left severe after-effects affecting not only the health sector but also all aspects of human life. The aim of this study is to inspect the current trends of the quantities of household waste produced during the first four waves of the pandemic. The study was carried out in Guelma city, northeastern of Algeria, where the first containment was registered on February 25, 2020, it concerns an Italian national (Mohamed et al. 2021). An increase in the production of household waste of approximately 14% during the first containment was recorded in the study area, with the interruption of recycling, which caused an enormous pressure on the technical landfill center of Guelma. The results showed that the trend of waste production decreased at the following averages: 205.80; 198.92; 196.69 and 192.43 tons, for the first four waves of COVID-19 respectively. Therefore, a return to the pre-pandemic state would be close, which dampens the impact and pressure on the landfill and the environment. This research allows for perceiving the waste management status in Algeria, between the pandemic and post-pandemic period.
Przejdź do artykułu

Bibliografia

  1. Acter, T., Uddin, N., Das, J., Akhter, A., Choudhury, T.R. & Kim, S. (2020). Evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as coronavirus disease 2019 (COVID-19) pandemic: A global health emergency. Science of The Total Environment, 730, 138996. DOI:10.1016/j. scitotenv.2020.138996
  2. Adyel, T.M. (2020). Accumulation of plastic waste during COVID-19. Science, 369(6509), pp. 1314–1315. DOI:10.1126/science. abd9925
  3. AND (2020). Report on the State of Waste Management in Algeria https://and.dz/site/wp-content/uploads/rapport%20DMA2.pdf (Assessed 03 july 2022).
  4. Anderson, R.M., Heesterbeek, H., Klinkenberg, D. & Hollingsworth, T.D. (2020). How will country-based mitigation measures influence the course of the COVID-19 epidemic? The Lancet, 395(10228), pp. 931–934. DOI:10.1016/S0140-6736(20)30567-5
  5. Andi (2020). National Agency for the Development of Investments (Andi). The borough of Guelma. Volumes 1–19. Presentation of the wilaya (borough) 2015. Assessed on Sep 09, 2020. http:// www.andi.dz/PDF/monographies/Guelma.pdf. Journal of Environmental Engineering.
  6. Aouissi, H.A., Kechebar, M.S.A., Ababsa, M., Roufayel, R., Neji, B., Petrisor, A.-I. Ohmagari, N. (2022). The Importance of Behavioral and Native Factors on COVID-19 Infection and Severity: Insights from a Preliminary Cross-Sectional Study. Healthcare, 10(7), 1341. DOI:10.3390/healthcare10071341
  7. Boroujeni, M., Saberian, M. & Li, J. (2021). Environmental impacts of COVID-19 on Victoria, Australia, witnessed two waves of Coronavirus. Environmental Science and Pollution Research, 28(11), pp. 14182–14191. DOI:10.1007/s11356-021-12556-y
  8. Chen, D.M.-C., Bodirsky, B.L., Krueger, T., Mishra, A. & Popp, A. (2020). The world’s growing municipal solid waste: trends and impacts. Environmental Research Letters, 15(7), 074021. DOI:10.1088/1748-9326/ab8659
  9. Chen, Q., Liang, M., Li, Y., Guo, J., Fei, D., Wang, L.& Li, X. (2020). Mental health care for medical staff in China during the COVID-19 outbreak. The Lancet Psychiatry, 7(4), e15-e16. DOI:10.1016/ S2215-0366(20)30078-X
  10. Chen, W., Zhang, N., Wei, J., Yen, H.-L. & Li, Y. (2020). Short- -range airborne route dominates exposure of respiratory infection during close contact. Building and Environment, 176, 106859. DOI:10.1101/2020.03.16.20037291
  11. Contributors, V. (2021). Economic Crisis and Mentality of Youth in Post-Pandemic Period edited by Sagar Simlandy: PS Opus Publications.
  12. DGPPS, M. (2020). Plan de préparation et de riposte à la menace de l’infection coronavirus Covid-19. Disponible sur: http://www. sante. gov. dz/images/Prevention/cornavirus/Plan-de-prparation. PDF.
  13. Ebner, N. & Iacovidou, E. (2021). The challenges of Covid-19 pandemic on improving plastic waste recycling rates. Sustainable Production and Consumption, 28, pp. 726–735. DOI:10.1016/j. spc.2021.07.001
  14. Ghennam, N. (2020). Waste Recycling Business in Algeria – Opportunities and Challenges for SME. Al-Riyada Bus. Econ. J., 6, pp. 10–22.
  15. Hyun, M. (2020). Korea sees steep rise in online shopping during COVID-19 pandemic. ZD Net. Assessed on April 12, 2020. https://www.zdnet.com/article/justice-department-seizes-fakecovid- 19-vaccine-website-stealing-info-from-visitors/
  16. Iyer, M., Tiwari, S., Renu, K., Pasha, M. Y., Pandit, S., Singh, B. & Balasubramanian, V. (2021). Environmental survival of SARSCoV- 2 – a solid waste perspective. Environmental Research, 197, 111015. DOI:10.1016/j.envres.2021.111015
  17. Jribi, S., Ben Ismail, H., Doggui, D. & Debbabi, H. (2020). COVID-19 virus outbreak lockdown: What impacts on household food wastage? Environment, Development and Sustainability, 22(5). DOI:10668-020-00740-y
  18. Kampf, G., Todt, D., Pfaender, S. & Steinmann, E. (2020). Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. Journal of Hospital Infection, 104(3), pp. 246–251. DOI:10.1016/j.jhin.2020.01.022
  19. Kandel, N., Chungong, S., Omaar, A. & Xing, J. (2020). Health security capacities in the context of COVID-19 outbreak: an analysis of International Health Regulations annual report data from 182 countries. The Lancet, 395(10229), pp. 1047–1053. DOI:10.1016/S0140-6736(20)30553-5
  20. Kebaili, F. K., Baziz-Berkani, A., Aouissi, H.A., Mihai, F.-C., Houda, M., Ababsa, M. & Fürst, C. (2022). Characterization and Planning of Household Waste Management: A Case Study from the MENA Region. Sustainability, 14(9), 5461. DOI:10.3390/su14095461
  21. Klemeš, J.J., Van Fan, Y., Tan, R.R. & Jiang, P. (2020). Minimising the present and future plastic waste, energy and environmental footprints related to COVID-19. Renewable and Sustainable Energy Reviews, 127, 109883. DOI:10.1016/j.rser.2020.109883
  22. Leveau, C.M., Aouissi, H.A. & Kebaili, F.K. (2022). Spatial diffusion of COVID-19 in Algeria during the third wave. GeoJournal, 1–6. DOI:10.1007/s10708-022-10608-5
  23. Lounis, M., Rais, M.A., Bencherit, D., Aouissi, H.A., Oudjedi, A., Klugarová, J. & Riad, A. (2022). Side Effects of COVID-19 Inactivated Virus vs. Adenoviral Vector Vaccines: Experience of Algerian Healthcare Workers. Frontiers in Public Health, 10, 896343-896343. DOI:10.3389/fpubh.2022.896343
  24. Low, D., & Koh, A. (2020). Singapore’s Food Delivery Surge during Lockdown Highlights Waste Problems. Bloomberg News, (Accessed 18 July2020).
  25. Mohamed, K., Amina, M.-S., Mouaz, M.B.E., Zihad, B. & Wafa, R. (2021). The impact of the coronavirus pandemic on the household waste flow during the containment period. Environmental Analysis Health and Toxicology, 36(2), e2021011. DOI:10.5620/ eaht.2021011
  26. Mol, M.P.G. & Caldas, S. (2020). Can the human coronavirus epidemic also spread through solid waste? Waste Management & Research, 38(5), pp. 485–486. DOI:10.1177/0734242X20918312
  27. Nzediegwu, C. & Chang, S. (2020). Developing Countries For Submission to: Resources Conservation y Recycling Type of Paper: Perspective. Resources, Conservation. Recycling, 104947.
  28. Paleologos, E.K., Elhakeem, M. & Amrousi, M.E. (2018). Bayesian analysis of air emission violations from waste incineration and coincineration plants. Risk Analysis, 38(11), pp. 2368–2378. DOI:10.1111/risa.13130
  29. Ranney, M.L., Griffeth, V. & Jha, A.K. (2020). Critical supply shortages – the need for ventilators and personal protective equipment during the Covid-19 pandemic. New England Journal of Medicine, 382(18), e41. DOI:10.1056/NEJMp2006141
  30. Remuzzi, A. & Remuzzi, G. (2020). COVID-19 and Italy: what next? The Lancet, 395(10231), pp. 1225–1228. DOI:10.1016/S0140- 6736(20)30627-9
  31. Roy, P., Mohanty, A.K., Wagner, A., Sharif, S., Khalil, H., & Misra, M. (2021). Impacts of COVID-19 outbreak on the municipal solid waste management: Now and beyond the pandemic. ACS Environmental Au, 1(1), pp. 32–45. DOI:10.1021/ acsenvironau.1c00005
  32. SNGID. (2019). National Waste Management Strategy https://www. nascrc.com/wp-content/uploads/2019/11/la-strat%C3%A9gienationale- pour-la-gestion- int%C3%A9gr%C3%A9e-desd% C3%A9chets-SNGID-2035-cas-des-POPs.pdf (accessed on 15 June 202)
  33. Van Fan, Y., Jiang, P., Hemzal, M. & Klemeš, J.J. (2021). An update of COVID-19 influence on waste management. Science of the Total Environment, 754, 142014. DOI:10.1016/j. scitotenv.2020.142014
  34. Vaverková, M.D., Paleologos, E.K., Dominijanni, A., Koda, E., Tang, C.S., Wdowska, M., Li, Q., Guarena, N., Abdel- Mohsen, O.M., Vieira, C.S., Manassero, M., O’Kelly, B.C., Xie, Q., Bo, MV., Adamcová, D.,. Podlasek, A., Anand, U.M., Arif, M., Venkata Siva Naga Sai Goli, Kuntikana, G., Palmeira, E.M., Pathak, S. & Singh, D.N. (2020). Municipal solid waste management under COVID-19: challenges and recommendations. Environmental Geotechnics, 8(3), pp. 217–232. DOI:10.1680/jenge.20.00082
  35. WHO (2020). COVID-19 2020 situation summary – updated 19 April 2020. Available at. https://www.cdc.gov/coronavirus/2019-ncov/ cases-updates/summary. html#covid19-pandemic (Accessed 20 june 2021 ).
  36. WHO (2022). The COVID-19 weekly epidemiological Update – updated 12 October 2022. Available. https://www.who.int/ publications/m/item/weekly-epidemiological-update-on-covid- 19-12-october-2022 (Accessed 18 /10/ 2022).
  37. World Health Organization. Worldmeter (2015). Worldmeter 2015. Available online: https:// www.worldometers.info/population/largest-cities-in-the-world/ (accessed on 12 March 2022).
  38. Yang, Y., Li, W., Zhang, Q., Zhang, L., Cheung, T. & Xiang, Y.-T. (2020). Mental health services for older adults in China during the COVID-19 outbreak. The Lancet Psychiatry, 7(4), e19. DOI:10.1016/S2215-0366 (20)30079-1
  39. Zandifar, A. & Badrfam, R. (2020). Iranian mental health during the COVID-19 epidemic. Asian Journal of Psychiatry, 51. DOI:10.1016/j.ajp.2020.101
Przejdź do artykułu

Autorzy i Afiliacje

Amina Mesbahi-Salhi
1
Mohamed Kaizouri
1
Bachir El Mouaz Madoui
1
Wafa Rezaiguia
2
ORCID: ORCID
Zihad Bouslama
1
ORCID: ORCID

  1. Laboratory of Ecology of Earth and Aquatic Systems, University of Badji Mokhtar,Annaba, 23052, Algeria
  2. University of Mohamed Cherif Messaadia, Souk-Ahras, 41043, Algeria

Instrukcja dla autorów

Archives of Environmental Protection
Instructions for Authors

Archives of Environmental Protection is a quarterly published jointly by the Institute of Environmental Engineering of the Polish Academy of Sciences and the Committee of Environmental Engineering of the Polish Academy of Sciences. Thanks to the cooperation with outstanding scientists from all over the world we are able to provide our readers with carefully selected, most interesting and most valuable texts, presenting the latest state of research in the field of engineering and environmental protection.

Scope
The Journal principally accepts for publication original research papers covering such topics as:
– Air quality, air pollution prevention and treatment;
– Wastewater treatment and utilization;
– Waste management;
– Hydrology and water quality, water treatment;
– Soil protection and remediation;
– Transformations and transport of organic/inorganic pollutants in the environment;
– Measurement techniques used in environmental engineering and monitoring;
– Other topics directly related to environmental engineering and environment protection.

The Journal accepts also authoritative and critical reviews of the current state of knowledge in the topic directly relating to the environment protection.

If unsure whether the article is within the scope of the Journal, please send an abstract via e-mail to: aep@ipispan.edu.pl

Preparation of the manuscript
The following are the requirements for manuscripts submitted for publication:
• The manuscript (with illustrations, tables, abstract and references) should not exceed 20 pages. In case the manuscript exceeds the required number of pages, we suggest contacting the Editor.
• The manuscript should be written in good English.
• The manuscript ought to be submitted in doc or docx format in three files:
– text.doc – file containing the entire text, without title, keywords, authors names and affiliations, and without tables and figures;
– figures.doc – file containing illustrations with legends;
– tables.doc – file containing tables with legends;
• The text should be prepared in A4 format, 2.5 cm margins, 1.5 spaced, preferably using Time New Roman font, 12 point. Thetext should be divided into sections and subsections according to general rules of manuscript editing. The proposed place of tables and figures insertion should be marked in the text.
• Legends in the figures should be concise and legible, using a proper font size so as to maintain their legibility after decreasing the font size. Please avoid using descriptions in figures, these should be used in legends or in the text of the article. Figures should be placed without the box. Legends should be placed under the figure and also without box.
• Tables should always be divided into columns. When there are many results presented in the table it should also be divided into lines.
• References should be cited in the text of an article by providing the name and publication year in brackets, e.g. (Nowak 2019). When a cited paper has two authors, both surnames connected with the word “and” should be provided, e.g. (Nowak and Kowalski 2019). When a cited paper has more than two author, surname of its first author, abbreviation ‘et al.’ and publication year should be provided, e.g. (Kowalski et al. 2019). When there are more than two publications cited in one place they should be divided with a coma, e.g. (Kowalski et al. 2019, Nowak 2019, Nowak and Kowalski 2019). Internet sources should be cited like other texts – providing the name and publication year in brackets.
• The Authors should avoid extensive citations. The number of literature references must not exceed 30 including a maximum of 6 own papers. Only in review articles the number of literature references can exceed 30.
• References should be listed at the end of the article ordered alphabetically by surname of the first author. References should be made according to the following rules:

1. Journal:
Surnames and initials. (publication year). Title of the article, Journal Name, volume, number, pages, DOI.
For example:

Nowak, S.W., Smith, A.J. & Taylor, K.T. (2019). Title of the article, Archives of Environmental Protection, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330

If the article has been assigned DOI, it should be provided and linked with the website on which it is made available.

2. Book:
Surnames and initials. (publication year). Title, Publisher, Place and publishing year.
For example:

Kraszewski, J. & Kinecki, K. (2019). Title of book, Work & Studies, Zabrze 2019.

3. Edited book:

Surnames and initials of text authors. (publishing year). Title of cited chapter, in: Title of the book, Surnames and
initials of editor(s). (Ed.)/(Eds.). Publisher, Place, pages.
For example:

Reynor, J. & Taylor, K.T. (2019). Title of chapter, in: Title of the cited book, Kaźmierski, I. & Jasiński, C. (Eds.). Work & Studies, Zabrze, pp. 145–189.

4. Internet sources:
Surnames and initials or the name of the institution which published the text. (publication year). Title, (website address (accessed on)).
For example:

Kowalski, M. (2018). Title, (http://www.krakow.pios.gov.pl/publikacje/2009/ (03.12.2018)).

5. Patents:

Orszulik, E. (2009). Palenisko fluidalne, Patent polski: nr PL20070383311 20070910 z 16 marca 2009.
Smith, I.M. (1988). U.S. Patent No. 123,445. Washington, D.C.: U.S. Patent and Trademark Office.

6. Materials published in language other than English:
Titles of cited materials should be translated into English. Information of the language the materials were published in should be provided at the end.
For example:

Nowak, S.W. & Taylor, K.T. (2019). Title of article, Journal Name, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330. (in Polish)

Not more than 30 references should be cited in the original research paper.


Submission of the manuscript
By submitting the manuscript Author(s) warrant(s) that the article has not been previously published and is not under consideration by another journal. Authors claim responsibility and liability for the submitted article.
The article is freely available and distributed under the terms of Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0, https://creativecommons.org/licenses/by-sa/4.0/legalcode), which permits use, distribution and reproduction in any medium provided the article is properly cited.


© 2021. The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0, https://creativecommons.org/licenses/by-sa/4.0/legalcode), which permits use, distribution, and reproduction in any medium, provided that the article is properly cited.


The manuscripts should be submitted on-line using the Editorial System available at http://www.editorialsystem.com/aep.

Review Process
All the submitted articles are assessed by the Editorial Board. If positively assessed by at least two editors, Editor in Chief, along with department editors selects two independent reviewers from recognized authorities in the discipline.
Review process usually lasts from 1 to 4 months.
Reviewers have access to PUBLONS platform which integrates into Bentus Editorial System and enables adding reviews to their personal profile.
After completion of the review process Authors are informed of the results and – if both reviews are positive – asked to correct the text according to reviewers’ comments. Next, the revised work is verified by the editorial staff for factual and editorial content.

Acceptance of the manuscript

The manuscript is accepted for publication on grounds of the opinions of independent reviewers and approval of Editorial Board. Authors are informed about the decision and also asked to pay processing charges and to send completed declaration of the transfer of copyright to the editorial office.

Proofreading and Author Correction
All articles published in the Archives of Environmental Protection go through professional proofreading process. If there are too many language errors that prevent understanding of the text, the article is sent back to Authors with a request to correct the indicated fragments or – in extreme cases – to re-translate the text.
After proofreading the manuscript is prepared for publishing. The final stage of the publishing process is Author correction. Authors receive a page proof copy of the article with a request to make final corrections.

Article publication charges


The publication fee in the Journal of an article up to 20 pages is 520 EUR/2500 zł

Payments in Polish zlotys
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001

Payments in Euros
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001
IBAN: PL 20 1130 1091 0003 9111 7820 0001
SWIFT: GOSKPLPW

Authors are kindly requested to inform the editorial office of making payment for the publication, as well as to send all necessary data for issuing an invoice
 

Procedura recenzowania

The reviewing procedure for papers published in Archives of Environmental Protection

1) After accepting the paper as matching to the scope of the Journal Editor-in-Chief with Section Editors choose two independent Reviewers (authorities in the domain/discipline). The chosen Reviewers (from professors and senior academic staff members) have to guarantee:

  • autonomous opinion,
  • the lack of interests conflict – especially the lack of personal and business relations with the Authors of the paper,
  • the preservation of confidentiality about the paper content and the Reviewer opinion about the paper.

2) After the Reviewers selection, Assistant Editor send them (via e-mail) requests to review the paper. Reviewers receive the full text of the paper (without Author personal data) qualified for the reviewing process and referee form, sometimes supplemented with the additional questions connected with the article. In the e-mail Assistant Editor also determine the extent of the review and the deadline (usually a month).

3) The personal data of Reviewers are not open (double-blind review). It can be declassify only on Author’s special request and after the Reviewer agreement. It sometimes happen when the review outcome is: manuscript rejection or when the paper contain controversial issues.

4) The reviewer send the review to the Editorial Office via e-mail. After receiving the review the Assistant Editor:

  • inform Authors about it (in the case of the review without corrections or when there are only small, editorial changes needed),
  • send the reviews to Authors. Authors have to correct the paper according to Reviewers comment and prepare the reply to Reviewers,
  • send the paper corrected by Authors to Reviewers again – when Reviewer wanted to review it again.

5) The final decision about manuscript is made by the Editorial Board on the basis of the analysis of remarks contained in the review and the final version of the paper send by Authors. 6) The final version of the paper, after typesetting and text makeup is being sent to Authors, who make an author’s corrections. Afterwards the paper is ready to be printed in the specific issue.

Recenzenci

All Reviewers in 2022

Alonso Rosa (University of the Basque Country/EHU, Bilbao, Spain), Alwaeli Mohamed (Silesian University of Technology), Arora Amarpreet (Sherpa Space Inc., Republic of Korea), Babu A.( Yeungnam University, Gyeongsan, Republic of Korea), Barbieri Maurizio (Sapienza University of Rome), Bień Jurand (Wydział Infrastruktury i Środowiska, Politechnika Częstochowska), Bogacki Jan (Wydział Instalacji Budowlanych, Hydrotechniki i Inżynierii Środowiska, Politechnika Warszawska), Bogumiła Pawluśkiewicz (Katedra Kształtowania Środowiska, SGGW), Boutammine Hichem (Laboratory of Industrial Process Engineering and Environment, Faculty of Process Engineering, University of Science and Technology, Bab-Ezzouar, Algiers, Algeria), Burszta-Adamiak Ewa (Uniwersytet Przyrodniczy we Wrocławiu), Cassidy Daniel (Western Michigan University, United States), Chowaniec Józef (Polish Geological Institute - National Research Institute), Czerniawski Robert (Instytut Biologii, Uniwersytet Szczeciński), da Silva Elaine (Fluminense Federal University, UFF, Brazil), Dąbek Lidia (Wydział Inżynierii Środowiska, Geodezji i Energetyki Odnawialnej, Politechnika Świętokrzyska), Dannowski Ralf (Leibniz-Zentrum für Agrarlandschaftsforschung: Müncheberg, Brandenburg, DE), Delgado-González Cristián Raziel (Universidad Autónoma del Estado de Hidalgo, Tulancingo , Mexico), Dewil Raf (KU Leuven, Belgium), Djemli Samir (University Badji Mokhtar Annaba, Algeria), Du Rui (University of Chinese Academy of Sciences, China), Egorin AM (Institute of Chemistry FEBRAS, Russia), Fadillah‬ ‪Ganjar‬‬ (Universitas Islam Indonesia, Indonesia), Gangadharan Praveena (Indian Institute of Technology Palakkad, India), Garg Manoj (Amity University, Noida, India), Gębicki Jacek (Politechnika Gdańska, Poland), Generowicz Agnieszka (Politechnika Krakowska, Poland), Gnida Anna (Silesian University of Technology, Poland), Golovatyi Sergey (Belarusian State University, Belarus), Grabda Mariusz (General Tadeusz Kosciuszko Military Academy of Land Forces, Poland), Guo Xuetao (Northwest A&F University, China), Gusiatin Mariusz (Uniwersytet Warminsko-Mazurski, Polska), Han Lujia (Instytut Badań Systemowych PAN, Polska), Holnicki Piotr (Systems Research Institute of the Polish Academy of Sciences, Poland), Houali Karim (University Mouloud MAMMERI, Tizi-Ouzou , Algeria), Iwanek Małgorzata (Lublin University of Technology, Poland), Janczukowicz Wojciech (University of Warmia and Mazury in Olsztyn, Poland), Jan-Roblero J. (Instituto Politécnico Nacional,Prol.de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, Mexico), Jarosz-Krzemińska Elżbieta (AGH, Wydział Geologii, Geofizyki i Ochrony Środowiska, Katedra Ochrony Środowiska), Jaspal Dipika (Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University), (SIU), Jorge Dominguez (Universidade de Vigo, Spain), Kabała Cezary (Wroclaw University of Environmental and Life Sciences, Poland), Kalka Joanna (Silesian University of Technology, Poland), Karaouzas Ioannis (Hellenic Centre for Marine Research, Greece), Khadim Hussein (University of Baghdad, Iraq), Khan Moonis Ali (King Saud University, Saudi Arabia), Kojić Ivan (University of Belgrade, Serbia), Kongolo Kitala Pierre (University of Lubumbashi, Congo), Kozłowski Kamil (Uniwersytet Przyrodniczy w Poznaniu, Poland), Kucharski Mariusz (IUNG Puławy, Poland), Lu Fan (Tongji University, China), Łukaszewski Zenon (Politechnika Poznańska; Wydział Technologii Chemicznej), Majumdar Pradeep (Addis Ababa Sciennce and Technology University, Ethiopia), Mannheim Viktoria (University of Miskolc, Hungary), Markowska-Szczupak Agata (Zachodniopomorski Uniwersytet Technologiczny w Szczecinie; Wydział Technologii i Inżynierii Chemicznej), Mehmood Andleeb (Shenzhen University, China), Mol Marcos (Fundação Ezequiel Dias, Brazil), Mrowiec Bożena (Akademia Techniczno-Humanistyczna w Bielsku-Białej, Poland), Nałęcz-Jawecki Grzegorz (Zakład Toksykologii i Bromatologii, Wydział Farmaceutyczny, WUM), Ochowiak Marek (Politechnika Poznańska, Poland), Ogbaga Chukwuma (Nile University of Nigeria, Nigeria), Oleniacz Robert (AGH University of Science and Technology in Krakow, Poland), Pan Ligong (Northeast Forestry University, China) Paruch Adam (Norwegian Institute of Bioeconomy Research, Norway), Pietras Dariusz (ATH Bielsko-Biała, Poland), Piotrowska-Seget Zofia (Uniwersytet Ślaski, Polska), Płaza Grażyna (IETU Katowice, Poland), Pohl Alina (IPIS PAN Zabrze, Poland), Poikane Sandra (European Commission, Joint Research Centre (JRC), Ispra, Italy), Poluszyńska Joanna (Łukasiewicz Research Network - Institute of Ceramics and Building Materials, Poland), Dudzińska Marzenna (Katedra Jakości Powietrza Wewnętrznego i Zewnętrznego, Politechnika Lubelska), Rawtani Deepak (National Forensic Sciences University, Gandhinagar, India) Rehman Khalil (GC Women University Sialkot, Pakistan), Rogowska Weronika (Bialystok University of Technology, Poland), Rzeszutek Mateusz (AGH, Wydział Geodezji Górniczej i Inżynierii Środowiska, Katedra Kształtowania i Ochrony Środowiska), Saenboonruang Kiadtisak (Faculty of Science, Kasetsart University, Bangkok), Sebakhy Khaled (University of Groningen, Netherlands), Sengupta D.K. (Regional Research Laboratory, Bhubaneswar. India), Shao Jing (Anhui University of Traditional Chinese Medicine, Chile), Sočo Eleonora (Rzeszów University of Technology, Poland), Sojka Mariusz (Poznan University of Life Sciences, Poland), Sonesten Lars (Swedish University of Agricultural Sciences, Sweden), Song Wencheng (Anhui Province Key Laboratory of Medical Physics and Technology, Chinese), Song ZhongXian (Henan University of Urban Construction, China), Spiak Zofia (Uniwersyet Przyrodniczy we Wrocławiu, Poland), Srivastav Arun (Chitkara University, Himachal Pradesh, India), Steliga Teresa (Instytut Nafty i Gazu -Państwowy Instytut Badawczy, Poland), Surmacz-Górska Joanna (Silesian University of Technology, Poland), Świątkowski Andrzej (Wojskowa Akademia Techniczna, Poland), Symanowicz Barbara (Siedlce University of Natural Sciences and Humanities, Poland), Szklarek Sebastian (European Regional Centre for Ecohydrology, Polish Academy of Sciences), Tabina Amtul (GC University,Lahore, Pakistan), Tang Lin (Hunan University, China), Torrent Sergi (Innovación, Aigües de Manresa, S.A, Manresa, Spain, Spain), Trafiałek Joanna (Warsaw University of Life Sciences, Poland), Vijay U. (Department of Microb, Jaipur, India, India), Vojtkova Hana (University of Ostrava, Czech Republic), Wang Qi (City University of Hong Kong, Hong Kong), Wielgosiński Grzegorz (Wydziału Inżynierii Procesowej i Ochrony Środowiska, Politechnika Łódzka), Wilk Pawel (IMGW-PIB, Poland), Wiśniewska Marta (Warsaw University of Technology, Poland), Yin Xianqiang (Northwest A&F University, Yangling China), Zając Grzegorz (University Of Life Sciences in Lublin, Poland), Zalewski Maciej (European Regional Centre for Ecohydrologyunder the auspices of UNESCO, Poland), Zegait Rachid (Ziane Achour University of Djelfa), Zerafat Mohammad (Shiraz University, Shiraz, Iran), Zgórska Aleksandra (Central Mining Institute, Poland), Zhang Chunhui (China University of Mining & Technology, China), Zhang Wenbo (Northwest Minzu University, Lanzhou China), Zhu Guocheng (Hunan University of Science and Technology, Xiangtan, China), Zwierzchowski Ryszard (Zakład Systemów Ciepłowniczych i Gazowniczych, Politechnika Warszawska)

All Reviewers in 2021

Adamkiewicz Łukasz, Aksoy Özlem, Alwaeli Mohamed, Aneta Luczkiewicz, Anielak Anna, Antonkiewicz Jacek, Avino Pasquale, Babbar Deepakshi, Badura Marek, Bajda Tomasz, Biedka Paweł, Błaszczak Barbara, Bodzek Michał, Bogacki Jan, Burszta-Adamiak Ewa, Cheng Gan, Chojecka Agnieszka, Chrzanowski Łukasz, Chwojnowski Andrzej, Ciesielczuk Tomasz, Cimochowicz-Rybicka Małgorzata, Curren Emily, Cydzik-Kwiatkowska Agnieszka, Czajka Agnieszka, Danielewicz Jan, Dannowski Ralf, Daoud Mounir, Değermenci Gökçe, Dejan Dragan, Deluchat Véronique, Demirbaş Ahmet, Dong Shuying, Dudzińska Marzenna, Dunalska Julita, Franus Wojciech, G. Uchrin Christopher, Generowicz Agnieszka, Gębicki Jacek, Giergiczny Zbigniew, Gierszewski Piotr, Glińska-Lewczuk Katarzyna, Godłowska Jolanta, Gokalp Fulya, Gospodarek Janina, Górecki Tadeusz, Grabińska-Sota Elżbieta, Grifoni M., Gromiec Marek, Guo Xuetao, Gusiatin Zygmunt, Hartmann Peter, He Jianzhong, He Yong, Heese Tomasz, Hybská Helena, Imhoff Silvia, Iurchenko Valentina, Jabłońska-Czapla Magdalena, Janowski Mirosław, Jordanov Igor, Jóżwiakowski Krzysztof, Juśkiewicz Włodzimierz, Kabsch-Korbutowicz Małgorzata, Kalinowski Radosław, Kalka Joanna, Kapusta Paweł, Karczewska Anna, Karczmarczyk Agnieszka, Kicińska Alicja, Kiciński Jan, Kijowska-Strugała Małgorzata, Klejnowski Krzysztof, Kłosok-Bazan Iwona, Kolada Agnieszka, Konieczny Krystyna, Kostecki Maciej, Kowalczewska-Madura Katarzyna, Kowalczuk Marek, Kozielska Barbara, Kozłowski Kamil, Krzemień Alicja, Kulig Andrzej, Kwaśny Justyna, Kyzioł-Komosińska Joanna, Ledakowicz Stanislaw, Leites Luchese Claudia, Leszczyńska-Sejda Katarzyna, Li Mingyang, Liu Chao, Mahmood Khalid, Majewska-Nowak Katarzyna, Makisha Nikolay, Malina Grzegorz, Markowska-Szczupak Agata, Mocek Andrzej, Mokrzycki Eugeniusz, Molenda Tadeusz, Molkenthin Frank, Mosquera Corral Anuska, Muhmood Atif, Myrta Anna, Narayanasamy Selvaraju, Nzila Alexis, OIkuski Tadeusz, Oleniacz Robert, Pacyna Jozef, Pająk Tadeusz, Pal Subodh Chandra, Panagopoulos Argyris, Paruch Adam, Paszkowski Waldemar, Pawęska Katarzyna, Paz-Ferreiro Jorge, Paździor Katarzyna, Pempkowiak Janusz, Piątkiewicz Wojciech, Piechowicz Janusz, Piotrowska-Seget Zofia, Pisoni E., Piwowar Arkadiusz, Pleban Dariusz, Policht-Latawiec Agnieszka, Polkowska Żaneta, Poluszyńska Joanna, Rajca Mariola, Reizer Magdalena, Riesgo Fernández Pedro, Rith Monorom, Rybicki Stanisław, Rydzkowski Tomasz, Rzepa Grzegorz, Rzeźnik Wojciech, Rzętała Mariusz, Sabovljevic Marko, Scudiero Rosaria, Sekret Robert, Sheng Yanqing, Sławomir Stelmach, Słowik Leszek, Sočo Eleonora, Sojka Mariusz, Sophonrat Nanta, Sówka Izabela, Spiak Zofia, Stachowski Piotr, Stańczyk-Mazanek Ewa, Stebel Adam, Sulieman Magboul, Surmacz-Górska Joanna, Szalinska van Overdijk Ewa, Szczerbowski Radosław, Szetela Ryszard, Szopińska Kinga, Szymański Kazimierz, Ślipko Katarzyna, Tepe Yalçin, Tórz Agnieszka, Tyagi Uplabdhi, Uliasz-Bocheńczyk Alicja, Urošević Mira, Uzarowicz Łukasz, Vakili Mohammadtaghi, Van Harreveld A.P., Voutchkova Denitza, Wang Gang, Wang X.K., Werbińska-Wojciechowska Sylwia, Wiatkowski Mirosław, Wielgosiński Grzegorz, Wilk Pawel, Willner Joanna, Wisniewski Jacek, Wiśniowska Ewa, Włodarczyk-Makuła Maria, Wojciechowska Ewa, Wojnowska-Baryła Irena, Wolska Małgorzata, Wszołek Tadeusz, Wu Yonghua, Yusuf Mohammad, Zuberi Amina, Zuwała Jarosław, Zwoździak Jerzy.


All Reviewers in 2020

Adamiec Ewa, Adamkiewicz Łukasz, Ahammed M. Mansoor, Akcicek Ekrem, Ameur Houari, Anielak Anna, Antonkiewicz Jacek, Avino Pasquale, Badura Marek, Barabasz Wiesław, Barthakur Manoj, Battegazzore Daniele, Biedka Paweł, Bilek Maciej, Bisschop Lieselot, Błaszczak Barbara, Błażejewski Ryszard, Bochoidze Inga, Bodzek Michał, Bogacki Jan, Borella Paola, Borowiak Klaudia, Borralho Teresa, Boyacioglu Hülya, Bunjongsiri Kultida, Burszta-Adamiak Ewa, Calderon Raul, Chatveera Burachat Chatveera, Cheng Gan, Chiwa Masaaki, Chojnicki Józef, Chrzanowski Łukasz, Ciesielczuk Tomasz, Czajka Agnieszka, Czaplicka Marianna, Daoud Mounir, Dąbek Lidia, Değermenci Gökçe, Dejan Dragan, Deluchat Véronique, Dereszewska Alina, Dębowski Marcin, Dong Shuying, Dudzińska Marzenna, Dunalska Julita, Dymaczewski Zbysław, El-Maradny Amr, Farfan-Cabrera Leonardo, Filizok Işık, Franus Wojciech, García-Ávila Fernando, Gariglio N.F., Gaya M.S, Gebicki Jacek, Giergiczny Zbigniew, Glińska-Lewczuk Katarzyna, Gnida Anna, Gospodarek Janina, Grabińska-Sota Elżbieta, Gusiatin Zygmunt, Harnisz Monika, Hartmann Peter, Hawrot-Paw Małgorzata, He Jianzhong, Hirabayashi Satoshi, Hulisz Piotr, Imhoff Silvia, Iurchenko Valentina, Jabłońska-Czapla Magdalena, Jacukowicz-Sobala Irena, Jeż-Walkowiak Joanna, Jordanov Igor, Jóżwiakowski Krzysztof, Kabsch-Korbutowicz Małgorzata, Kajda-Szcześniak Małgorzata, Kalinowski Radosław, Kalka Joanna, Karczewska Anna, Karwowska Ewa, Kim Ki-Hyun, Klejnowski Krzysztof, Klojzy-Karczmarczyk Beata, Korniłłowicz-Kowalska Teresa, Korus Irena, Kostecki Maciej, Koszelnik Piotr, Koter Stanisław, Kowalska Beata, Kowalski Zygmunt, Kozielska Barbara, Krzyżyńska Renata, Kulig Andrzej, Kwarciak-Kozłowska Anna, Kyzioł-Komosińska Joanna, Lagzdins Ainis, Ledakowicz Stanislaw, Ligęza Sławomir, Liu Xingpo, Loga Małgorzata, Łebkowska Maria, Macherzyński Mariusz, Makisha Nikolay, Makowska Małgorzata, Masłoń Adam, Mazur Zbigniew, Michel Monika, Miechówka Anna, Miksch Korneliusz, Mnuchin Nathan, Mokrzycki Eugeniusz, Molkenthin Frank, Mosquera Corral Anuska, Muhmood Atif, Muntean Edward, Myrta Anna, Nahorski Zbigniew, Narayanasamy Selvaraju, Naumczyk Jeremi, Nawalany Marek, Noubactep C., Nowakowski Piotr, Obarska-Pempkowiak Hanna, Orge C.A., Paul Lothar, Pawęska Katarzyna, Paździor Katarzyna, Pempkowiak Janusz, Peña A., Pietr Stanisław, Piotrowska-Seget Zofia, Pisoni E., Płaza Grażyna, Polkowska Żaneta, Reizer Magdalena, Renman Gunno, Rith Monorom, Romanovski Valentin, Rybicki Stanisław, Rydzkowski Tomasz, Rzętała Mariusz, Sadeghi Mahdi, Sakakibara Yutaka, Scudiero Rosaria, Semaan Mary, Seredyński Franciszek, Sergienko Ruslan, Shen Yujun, Sheng Yanqing, Sidełko Robert, Sočo Eleonora, Sojka Mariusz, Sówka Izabela, Spiak Zofia, Stegenta-Dąbrowska Sylwia, Steliga Teresa, Sulieman Magboul, Surmacz-Górska Joanna, Suryadevara Nagaraja, Suska-Malawska Małgorzata, Szalinska van Overdijk Ewa, Szczerbowski Radosław, Szetela Ryszard, Szpyrka Ewa, Szulczyński Bartosz, Szwast Maciej, Szyszlak-Bargłowicz Joanna, Ślipko Katarzyna, Świetlik Ryszard, Tabernacka Agnieszka, Tepe Yalçin, Tobiszewski Marek, Treichel Wiktor, Tyagi Uplabdhi, Uliasz-Bocheńczyk Alicja, Uzarowicz Łukasz, Van Harreveld A.P., Wang X. K., Wasielewski Ryszard, Wiatkowski Mirosław, Wielgosiński Grzegorz, Willner Joanna, Wisniewski Jacek, Witczak Joanna, Witkiewicz Zygfryd, Włodarczyk Małgorzata, Włodarczyk-Makuła Maria, Wojciechowska Ewa, Wojtkowska Małgorzata, Xinhui Duan, Yang Chunping, Yaqian Zhao Yaqian, Załęska-Radziwiłł Monika, Zamorska Justyna, Zasina Damian, Zawadzki Jarosław, Zdeb Monika M., Zheng Guodi, Zhu Ivan X., Ziułkiewicz Maciej, Zuberi Amina, Zwoździak Jerzy, Żabczyński Sebastian, Żukowski Witold, Żygadło Maria.




Polityka antyplagiatowa

Anti-plagiarism policy

In accordance with AEP requirements, the authors of all articles submitted to the Editorial Office declare that the paper is an original work. Articles that have been approved by the Editorial Board for further processing are checked for originality using the program and iThenticate. As plagiarism, the Editorial Board (according to the definition of plagiarism/anti-plagiarism) recognizes:

• claiming someone else's work or parts of it as your own;
• copying someone else's or your own (self-plagiarism) fragments of articles without reference to the publication (title of the work, names of authors) from which it was taken
• inserting fragments of other works into the article, changing only the order of the sentence or introducing only minor changes to it
• an article in which the copied fragments, despite citing their sources, constitute a significant/major part of the article.

In case of plagiarism/self-plagiarism, further work on this article is stopped and it is removed from the Editorial System. The authors of the article (via the corresponding author) submitted to the Editorial Office of the AEP are informed about the reasons for removing the article.

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji