Applied sciences

Archives of Electrical Engineering

Content

Archives of Electrical Engineering | 2016 | vol. 65 | No 4 December |

Download PDF Download RIS Download Bibtex

Abstract

The paper presents the advanced control system of the wind energy conversion with a variable speed wind turbine. The considered system consists of a wind turbine with the permanent magnet synchronous generator (PMSG), machine side converter (MSC), grid side converter (GSC) and control circuits. The mathematical models of a wind turbine system, the PMSG generator and converters have been described. The control algorithms of the converter systems based on the methods of vector control have been applied. In the advanced control system of the machine side converter the optimal MPPT control method has been used. Additionally the pitch control scheme is included in order to achieve the limitation of maximum power and to prevent mechanical damage of the wind turbine. In the control system of the grid side converter the control of active and reactive power has been applied with the application of Voltage Oriented Control (VOC). The performance of the considered wind energy system has been studied by digital simulation. The results of simulation studies confirmed the good effectiveness of the considered wind turbine system and very good performance of the proposed methods of vector control and control systems.
Go to article

Authors and Affiliations

Piotr Gajewski
Krzysztof Pieńkowski
Download PDF Download RIS Download Bibtex

Abstract

A new approach to solve the inverse problem in electrical capacitance tomography is presented. The proposed method is based on an artificial neural network to estimate three different parameters of a circular object present inside a pipeline, i.e. radius and 2D position coordinates. This information allows the estimation of the distribution of material inside a pipe and determination of the characteristic parameters of a range of flows, which are characterised by a circular objects emerging within a cross section such as funnel flow in a silo gravitational discharging process. The main advantages of the proposed approach are explicitly: the desired characteristic flow parameters are estimated directly from the measured capacitances and rapidity, which in turn is crucial for online flow monitoring. In a classic approach in order to obtain these parameters in the first step the image is reconstructed and then the parameters are estimated with the use of image processing methods. The obtained results showed significant reduction of computations time in comparison to the iterative LBP or Levenberg-Marquard algorithms.
Go to article

Authors and Affiliations

Hela Garbaa
Andrzej Romanowski
Lidia Jackowska-Strumiłło
Krzysztof Grudzień
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the loss-oriented performance analysis of a radial highspeed permanent magnet (PM) machine with concentrated windings for automotive application. The PM synchronous machine was designed for an operating frequency up to 800 Hz. The main aim of this paper is to analyse the selected methods for magnet eddycurrent loss reduction. The first approach to rotor modification regards magnet segmentation in circumferential and axial directions. The second approach is based on changes in tooth-tips shape of the stator. The best variants of tooth-tip shapes are determined for further investigation, and adopted with a rotor having magnet segmentation. It is found that the machine with a segmented magnet leads to magnet loss reduction by 81%. Further loss reduction by 45% can be realized with the proposed tooth-tip shape. Additionally, owing to the stator and rotor modifications, the main machine parameters are investigated, such as back-EMF, electromagnetic torque, torque ripple and cogging torque. The 2-D and 3-D finite element analysis (FEA) is used for electromagnetic analysis. An experimental approach based on a partially wound stator is employed to verify the 3-D FEA.
Go to article

Authors and Affiliations

Adrian Młot
Marian Łukaniszyn
Mariusz Korkosz
Download PDF Download RIS Download Bibtex

Abstract

In the paper, the modified (compared to the classical asymmetric half-bridge) converter for a switched reluctance machine with an asymmetric rotor magnetic circuit was analysed. An analysis for two various structures of switched reluctance motors was conducted. The rotor shaping was used to obtain required start-up torque or/and to obtain less electromagnetic torque ripple. The discussed converter gives a possibility to turn a phase off much later while reduced time of a current flows in a negative slope of inductance. The results of the research in the form of waveforms of currents, voltages and electromagnetic torque were presented. Conclusions were formulated concerning the comparison of the characteristics of SRM supplied by the classic converter and by the one supplied by the analysed converter.
Go to article

Authors and Affiliations

Piotr Bogusz
Mariusz Korkosz
Jan Prokop
Download PDF Download RIS Download Bibtex

Abstract

In the description of small-signal transmittances of switch-mode power converters several characteristic frequencies are usually used, corresponding to poles and zeros of transmittances. The knowledge of these frequencies is important in the design of control circuits for converters and usually are assumed to be constant for a given power stage of a converter. The aim of the paper is to evaluate the influence of converter primary parameters and load conductance on characteristic frequencies. Analytical derivations and numerical calculations are performed for an ideal and non-ideal BUCK converter working in continuous or discontinuous conduction mode.
Go to article

Authors and Affiliations

Włodzimierz Janke
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with some aspects of formulation and implementation of a broadband algorithm with build-in analysis of some dispersive media. The construction of the finite element method (FEM) based on direct integration of Maxwell’s equations and solution of some additional convolution integrals is presented. The broadband, fractional model of permittivity is approximated by a set of some relaxation sub-models. The properties of the 3D time-dependent formulation of the FEM algorithm are determined using a benchmark problem with the Cole-Cole and the Davidson-Cole models. Several issues associated with the implementation and some constraints of the broadband finite element algorithm are presented.
Go to article

Authors and Affiliations

Bogusław Butryło
Download PDF Download RIS Download Bibtex

Abstract

An early fault diagnostic method of Direct Current motors was presented in this article. The proposed method used acoustic signals of a motor. A method of feature extraction called MSAF-RATIO30-EXPANDED (method of selection of amplitudes of frequencies – ratio 30% of maximum of amplitude – expanded) was presented and implemented. An analysis of proposed method was carried out for early fault states of a real DC motor. Four following states of the DC motor were measured and analyzed: the healthy DC motor, DC motor with 3 shorted rotor coils, DC motor with 6 shorted rotor coils, DC motor with a broken coil. Measured states were caused by natural degradation of the DC motor. The obtained results of analysis were good. The presented early fault diagnostic method can be used for protection of DC motors.
Go to article

Authors and Affiliations

Adam Glowacz
Download PDF Download RIS Download Bibtex

Abstract

The study presents the analysis of the effects occurring at the propagation of electromagnetic waves within an area containing non-ideal, non-homogenous and absorbing dielectric. The analysed models are connected with housing constructions and include single and double-layered walls made of clay hollow bricks. The influence of the size of holes, the contained clay mass percentage and conductivity of brick on the distribution of electric field is presented. Double-layered wall causes more heterogeneity in distribution of electric field and numerous maxima and minima to compare with singlelayered construction. The presented results refer to the electromagnetic field generated by a wireless communication system (Wi-Fi), operating within the standard frequencies (2.4 GHz and 5 GHz). A FDTD method was used to the analysis of electric field distribution. Also in this paper all formulations of difference method (FDTD) is presented. The possibilities of modifying the described method are indicated too. The obtained values of electric field intensity allow to determining the attenuation coefficient for different variants of the walls. Detailed analysis of influence of different types of building construction will make it possible to better understand the wave phenomena and counteract local fading at planning of wireless networks systems.
Go to article

Authors and Affiliations

Agnieszka Choroszucho
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a concept, a construction, a circuit model and experimental results of the double-rotor induction motor. This type of a motor is to be implemented in the concept of the electromagnetic differential. At the same time it should fulfill the function of differential mechanism and the vehicle drive. One of the motor shafts is coupled to the direction changing mechanical transmission. The windings of the external rotor are powered by slip rings and brushes. The inner rotor has the squirrel-cage windings. The circuit model parameters were calculated based on the 7.5 kW real single-rotor induction motor (2p = 4). Experimental verification of the model was based on comparison between the mentioned single-rotor motor and double-rotor model with the outer rotor blocked. The presented results showed relatively good compliance between the model and real motor.
Go to article

Authors and Affiliations

Dominik Adamczyk
Andrzej Wilk
Michal Michna
Download PDF Download RIS Download Bibtex

Abstract

Regarding the importance of short circuit and inrush current simulations in the split-winding transformer, a novel nonlinear equivalent circuit is introduced in this paper for nonlinear simulation of this transformer. The equivalent circuit is extended using the nonlinear inductances. Employing a numerical method, leakage and magnetizing inductances in the split-winding transformer are extracted and the nonlinear model inductances are estimated using these inductances. The introduced model is validated and using this nonlinear model, inrush and short-circuit currents are calculated. It has been seen that the introduced model is valid and suitable for simulations of the split-winding transformer due to various loading conditions. Finally, the effects of nonlinearity of the model inductances are discussed in the following.
Go to article

Authors and Affiliations

Davood Azizian
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a novel approach for reactive power planning of a connected power network. Reactive power planning is nothing but the optimal usage of all reactive power sources i.e., transformer tap setting arrangements, reactive generations of generators and shunt VAR compensators installed at weak nodes. Shunt VAR compensator placement positions are determined by a FVSI (Fast Voltage Stability Index) method. Optimal setting of all reactive power reserves are determined by a GA (genetic algorithm) based optimization method. The effectiveness of the detection of the weak nodes by the FVSI method is validated by comparing the result with two other wellknown methods of weak node detection like Modal analysis and the L-index method. Finally, FVSI based allocation of VAR sources emerges as the most suitable method for reactive power planning.
Go to article

Authors and Affiliations

Biplab Bhattacharyya
Shweta Rani
Ram Ishwar Vais
Indradeo Pratap Bharti
Download PDF Download RIS Download Bibtex

Abstract

The influence and the potential risk due to hidden faults of a relay protection system on power supply in distribution systems are paid more and more attention to. A probability analysis method is used to analyse fault characteristics and action mechanism of dominant faults, hidden misoperation and non-operation of the relay protection systems, and failure probability model of relay protection system is constructed and simplified. The effects of dominant faults, hidden misoperation and non-operation of the relay protection systems on the reduced power supply load power are analysed, and a probabilistic model for reduced power supply load power is constructed by three parts corresponding to dominant faults, hidden misoperation and non-operation. A probability calculation method of power supply risk occurrence due to hidden faults of relay protecttion system is proposed considering the fault probability of the relay protection systems, the frequency of the hidden faults occurring in operation period, the reduced power supply load power or load power outage, and the connection mode of the in-lines, out-lines and transformers in a substation. The feasibility and applicability of the proposed method for estimation of risk value probability of the relay protection systems is verified by two studied examples.
Go to article

Authors and Affiliations

Si Tuyou
Wu Jiekang
Yuan Weideng
Du Anan
Download PDF Download RIS Download Bibtex

Abstract

A novel circuit topology of modified switched boost high frequency hybrid resonant inverter fitted induction heating equipment is presented in this paper for efficient induction heating. Recently, induction heating technique is becoming very popular for both domestic and industrial purposes because of its high energy efficiency and controllability. Generally in induction heating, a high frequency alternating magnetic field is required to induce the eddy currents in the work piece. High frequency resonant inverters are incorporated in induction heating equipment which produce a high frequency alternating magnetic field surrounding the coil. Previously this high frequency alternating magnetic field was produced by voltage source inverters. But VSIs have several demerits. So, in this paper, a new scheme of modified switched boost high frequency hybrid resonant inverter fitted induction heating equipment has been depicted which enhances the energy efficiency and controllability and the same is validated by PSIM.
Go to article

Authors and Affiliations

Ananyo Bhattacharya
Kaushik Sit
Pradip Kumar Sadhu
Nitai Pal
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a mathematical model of a power controller for a high-frequency induction heating system based on a modified half-bridge series resonant inverter. The output real power is precise over the heating coil, and this real power is processed as a feedback signal that contends a closed-loop topology with a proportional-integral-derivative controller. This technique enables both control of the closed-loop power and determination of the stability of the high-frequency inverter. Unlike the topologies of existing power controllers, the proposed topology enables direct control of the real power of the high-frequency inverter.
Go to article

Authors and Affiliations

Palash Pal
Debabrata Roy
Avik Datta
Pradip K. Sadhu
Atanu Banerjee
Download PDF Download RIS Download Bibtex

Abstract

The paper discusses some of the recent advances in kriging based worst-case design optimisation and proposes a new two-stage approach to solve practical problems. The efficiency of the infill points allocation is improved significantly by adding an extra layer of optimisation enhanced by a validation process.
Go to article

Authors and Affiliations

Yinjiang Li
Mihai Rotaru
Jan K. Sykulski
Download PDF Download RIS Download Bibtex

Abstract

This paper presents and discusses the mathematical model of thermal phenomena occurring in axis-symmetric electromechanical linear motion converters. On the basis of the developed model, software to analyze the process of the heating up of this type of converters, was created. The effect of the thickness and type of material of the slot insulation, as well as the speed of the runner on the temperature distribution in the analyzed object was examined in-depth. Selected results of simulated calculations have been presented.
Go to article

Authors and Affiliations

Jacek Mikołajewicz

Instructions for authors

ARCHIVES OF ELECTRICAL ENGINEERING (AEE) (previously Archiwum Elektrotechniki), quarterly journal of the Polish Academy of Sciences is OpenAccess, publishing original scientific articles and short communiques from all branches of Electrical Power Engineering exclusively in English. The main fields of interest are related to the theory & engineering of the components of an electrical power system: switching devices, arresters, reactors, conductors, etc. together with basic questions of their insulation, ampacity, switching capability etc.; electrical machines and transformers; modelling & calculation of circuits; electrical & magnetic fields problems; electromagnetic compatibility; control problems; power electronics; electrical power engineering; nondestructive testing & nondestructive evaluation.

This page uses 'cookies'. Learn more