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VARIABLE THICKNESS APPROACH FOR FINDING MINIMUM
LAMINATE THICKNESS AND INVESTIGATING EFFECT

OF DIFFERENT DESIGN VARIABLES ON ITS PERFORMANCE

The performance of majority engineering systems made of composite laminates
can be improved by increasing strength to weight ratio. Variable thickness approach
(VTA), in discrete form, used in this study is capable of finding minimum laminate
thickness in one stage only, instead of two stage methodology defined by other re-
searchers, with substantial accuracy for the given load conditions. This minimum
required laminate thickness can be used by designers in multiple ways. Current study
reveals that effectiveness of VTA in this regard depends on ply thickness increment
value and number of plies. Maximum Stress theory, Tsai Wu theory and Tsai Hill
theory are used as constraints, while ply angles, ply thicknesses and number of plies
in discrete form are used as design variables in current simulation studies. Optimiza-
tion is carried out using direct value coded genetic algorithm. The effect of design
variables such as ply angles, ply thicknesses and number of plies in discrete form on
optimum solution is investigated considering Uniform Thickness Approach (UTA)
and Variable Thickness Approach (VTA) for various load cases.

Nomenclature

E11 elastic modulus in longitudinal direction
E22 elastic modulus in transverse direction
G12 in plane shear modulus
γ12 major Poisson’s ratio
SLc compressive strength in longitudinal direction
SLt tensile strength in longitudinal direction
STc compressive strength in transverse direction
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STt tensile strength in transverse direction
SLts shear strength
θ ply orientation angle
t thickness of each ply
ρ mass density
a length of laminate
b width of laminate

1. Introduction

Composite laminate plate is a structural element made up of multiple fiber
reinforced polymer (FRP) laminas/plies connected together to provide required
engineering properties for an application (Fig. 1).

FIBERS + MATRIX 

Lamina / Ply Laminate 

Fig. 1. Constituents of a composite laminate

Composite laminates play a major role in various application segments such
as aerospace engineering, automotive technology, marine engineering, civil en-
gineering, etc. The main advantage of composite laminates is their low weight
associated with high stiffness and strength along the direction of the reinforcement.
The properties of composite laminate depend on various design variables such as
total number of laminas, stacking sequence, ply angles, thickness of each ply, etc.
The composite laminate can be tailor-made by using a combination of these design
variables to suit the application under consideration.

A composite laminate subjected to in plane loads Nxx , Nyy and Nxy is shown in
Fig. 2. In the figure, X, Y and Z denotes global coordinate system of the composite
laminate, while 1 and 2 represent local coordinate system for individual lamina.
Axis 1 of the local coordinate system is along the length of the fiber and axis 2
is perpendicular to local axis 1. Ply angle θ is the angle between fiber and the
longitudinal axis of the plate.

In any structural design application, the aimof design is tomaximize strength to
weight ratio for achieving maximummaterial performance in terms of durability of
structure, fuel economy, cost, etc. In order to satisfy this major design requirement,
many researchers [1–22] have taken weight minimization objective during design
optimization of composite laminate for different loading conditions. Efforts taken
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Fig. 2. Global and local coordinate systems for composite laminate

by different researchers in the field of design optimization of composite laminates
are described in [23].

Conflicting nature of properties and multiple variables involved in the prob-
lem motivates the use of optimization methods for design of composite laminate.
Comparison of various optimization methods reported by different researchers
shows that genetic algorithm is the most popular and suitable method for design
optimization of composite laminates [24].

A composite laminate can be designed using two approaches; Uniform Thick-
ness Approach (UTA) and Variable Thickness Approach (VTA). In UTA, all the
laminas in a laminate will have same thickness, while in VTA the laminas in the
laminate may have same or different thicknesses. The use of ply thickness as dis-
crete variable is rarely observed [1, 13] so far in the available literature. Majority
researchers have accepted UTA based laminate design, while the VTA is rarely
used to design a laminate because of manufacturing difficulty and mathematical
complexity. Comparison of both the approaches yields that the number of design
variables in VTA becomes greater than the design variables in UTA. Moreover,
the nature of variables, i.e., ply angle and ply thickness is different. Generally, ply
angle is an integer number and ply thickness is a real number.

Few of the researchers [1, 13, 14, 16] have used VTA for design analysis of
composite laminates, but with different perspective. Minimization of weighted sum
of deflection and weight of composite laminate subjected to normal loading using
TsaiWu theory as constraint is proposed in [13]. Fiber angles and layer thicknesses,
both in discrete form are considered as design variables in the simulation study
and optimization is carried out using binary coded genetic algorithm. Conventional
binary-coded genetic algorithm has limitations in catching exact incremental value
of design variables commonly used in engineering applications. One of the ways
to overcome this difficulty is to use the integer-coded genetic algorithm for design
optimization of composite laminates [3]. Direct value-coded genetic algorithm is
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more simplified and efficient way to overcome limitations of binary-coded genetic
algorithm. This methodology has been successfully implemented for weight mini-
mization of conventional 0◦, ±45◦, 90◦ composite laminates subjected to Tsai Wu,
Puck and maximum stress theory as constraints considering UTA [4]. Yet, effective
utilization of direct value-coded genetic algorithm, in generic form for UTA as well
as VTA is not observed in available literature.

Few of the researchers [14, 16] used two-level optimization strategy to de-
termine minimum required thickness of laminate subjected to lateral and in plane
loading based on Tsai Hill criteria. In the first stage of analysis, fiber angles in
discrete form are treated as design variables, while in the second stage, layer thick-
nesses in continuous form are used as design variables. Even though, two-level
strategy is accurate in prediction of minimum laminate thickness, it is time con-
suming because of use of ply thickness as continuous design variable and two
stages of optimization. At the same time, two-level strategy also involves complex
mathematical calculations. VTA, used for the same purpose and presented in the
current study, is simple to understand and possess substantial accuracy.

To check the failure of the laminate while minimizing its weight, researchers
working in this field have proposed various criteria (theories), whichmay have some
minor or major weaknesses. Authors of [25, 26] compared and assessed different
leading theories for predicting failure in composite laminates under complex states
of stress against experimental evidence through few selected test cases.

In the present study, first ply failure criterion is adopted to predict failure of lam-
inate. The laminate is considered as failed when any single ply of the laminate fails.
Among all these theories, Maximum Stress theory, Maximum Strain theory, Tsai
Hill theory and TsaiWu theory are the most preferred theories for predicting failure
of laminate and used by most of the researchers [1–7, 16–18, 21, 22, 27, 28] for in
plane loading conditions. Out of these four failure theories,MaximumStress theory
(MS), Tsai Wu theory (TW) and Tsai Hill theory (TH) are considered and applied
individually as constraints in the current study as these theories are strength based.

A brief description of these theories is given below. Detail description of these
theories and mechanics of composites is available in [29].

1.1. Maximum stress theory

According to this failure theory, a composite lamina will fail, when any one
of the principal stresses developed in the lamina reaches its limiting value. The
limiting values are defined by the respective strengths. The lamina will fail, if

σ11 = SLC or σ11 = SLt ,

σ22 = STC or σ22 = STt ,

τ12 = SLts ,

whereσ11 andσ22, are normal stresses developed in direction 1 and 2, respectively,
while τ12 is the shear stress developed in plane 1–2 for individual lamina.
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1.2. Tsai Wu theory

This failure criterion is based on von Mises yield criterion. According to this
theory, the lamina under consideration will fail, when the following condition is
satisfied.

F1σ11 + F2σ22 + F6τ12 + F11σ
2
11 + F22σ

2
22 + F66τ

2
12 + 2F12σ11σ22 = 1

where: F1, F2, F6, F11, F22, F66 and F12 are the coefficients which can be calculated
using strengths of the lamina in different directions as given below,

F1 =
1

SLt
−

1
SLC

, F2 =
1

STt
−

1
STC

, F6 = 0,

F11 =
1

SLtSLC
, F22 =

1
STtSTC

, F66 =
1

S2
Lts

.

The value of F12 depends on various principle unidirectional strengths of the
laminate as well as biaxial failure stresses. The recommended range for F12 in case
of composite laminates is,

−
1
2

(F11F22)0.5 6 F12 6 0.

In absence of any experimental data, the lower limit of above equation is
preferred as F12.

F12 = −
1
2

(F11F22)0.5.

1.3. Tsai Hill theory

According to the Tsai Hill theory, used by few of the researchers [14],

σ2
11

S2
Lt
−
σ11σ22
SLtSTt

+
σ2

22

S2
Tt
+
τ2
12

S2
Lts
= 1.

It is observed that most of the research articles [16, 18] use a generalized form
of this theory given below for the analysis. The results presented in this article are
obtained using different forms of generalized equation of Tsai Hill theory.

According to the generalized form of this theory, the lamina will fail when
following condition is satisfied

σ2
11

S2
Lt
−
σ11σ22

S2
Lt
+
σ2

22

S2
Tt
+
τ2
12

S2
Lts
= 1.
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This equation of generalized form is applicable when both σ11 and σ22 are
positive, i.e., for the first stress quadrant. For remaining stress quadrants, the present
form is modified as per necessity and applied in the analysis [29].

In this study, theories of failure are used as constraints, which have to be
satisfied for safe design. A procedure, based on mechanics of materials, used to
find the stresses required to develop constraint equations is explained in the next
section.

2. Analysis of composite laminate

The stresses and strains developed in each lamina are calculated using classical
lamination plate theory. The geometry of the laminate coordinate systems and
loading conditions considered in the analysis are shown in Fig. 2. The additional
geometric parameters required in the analysis of laminate are shown in Fig. 3.
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Fig. 3. Additional geometric parameters of laminate

In Fig. 3, t1, t j and tn denote thicknesses of 1st, j th and nth lamina; h0 denotes
distance from the laminate mid-plane to the top of the 1st lamina, while h1 is
the distance from the laminate mid-plane to the bottom of the 1st lamina. h j−1 is
the distance from the laminate mid-plane to the top of the j th lamina and h j is the
distance from the laminate mid-plane to the bottom of the j th lamina. The total
thickness of the laminate is denoted with letter T . Z j is the distance from the
laminate mid-plane to the mid-plane of the j th lamina.

The stiffnessmatrix for an individual lamina
[
Q
]
is calculated from thematerial

properties as,

[
Q
]
=



Q11 Q12 Q16
Q12 Q22 Q26
Q16 Q26 Q66


. (1)



VARIABLE THICKNESS APPROACH FOR FINDING MINIMUM LAMINATE THICKNESS . . . 533

The elements of the stiffness matrix
[
Q
]
are calculated as,

Q11 = Q11 cos4 θ + 2(Q12 + 2Q66) sin2 θ cos2 θ +Q22 sin4 θ,

Q12 = Q12(sin4 θ + cos4 θ) + (Q11 +Q22 − 4Q66) sin2 θ cos2 θ,

Q22 = Q11 sin4 θ + 2(Q12 + 2Q66) sin2 θ cos2 θ +Q22 cos4 θ,

Q16 = (Q11 −Q12 − 2Q66) sin θ cos3 θ + (Q12 −Q22 + 2Q66) cos θ sin3 θ,

Q26 = (Q11 −Q12 − 2Q66) cos θ sin3 θ + (Q12 −Q22 + 2Q66) sin θ cos3 θ,

Q66 = (Q11 +Q22 − 2Q12 − 2Q66) sin2 θ cos2 θ +Q66 sin4 θ + cos4 θ,

where

Q11 =
E11

1 − γ12γ21
, Q22 =

E22
1 − γ12γ21

, γ21 = γ12
E22
E11

,

Q12 = Q21 =
γ21E11

1 − γ12γ21
=

γ12E22
1 − γ12γ21

, Q66 = G12 .

The extensional stiffness matrix A, coupling stiffness matrix B and bending
stiffness matrix D for laminate are calculated as,

A =
n∑
j=1

(
Q j

) (
h j − h j−1

)
, (2)

B = 1
2

n∑
j=1

(
Q j

) (
h2
j − h2

j−1

)
, (3)

D = 1
3

n∑
j=1

(
Q j

) (
h3
j − h3

j−1

)
. (4)

Above, three matrices are used to calculate the mid plane strains [ε0] and
curvatures [K]] as given below.

[ε0] = [A1][N] + [B1][M], (5)

[K] = [C1][N] + [D1][M] (6)

where

[ε0] =



ε0
xx

ε0
yy

ε0
xy


, [N] =



Nxx

Nyy

Nxy


, [M] =



Mxx

Myy

Mxy


,
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[A1] = [A−1] + [A−1][B][(D∗)−1][B][A−1],
[B1] = −[A−1][B][(D∗)1],
[C1] = [B1]T ,
[D1] = [(D∗)−1] and [D∗] = [D] − [B][A−1][B].

The mid-plane strains and curvatures can produce actual stresses [σ]j and
strains [ε]j for any j th lamina in global co-ordinate system.

[ε]j =
[
ε0
]
+ Z j[K], (7)

[σ]j = [Q]j[ε]j, where [σ]j =



σxx

σyy

τxy

 j

. (8)

As the first ply failure criterion is based on failure of a single lamina, it
is necessary to predict the stresses developed in an individual lamina in local
coordinate system. The following relations are used for this purpose.

σ11 = σxx cos2 θ + σyy sin2 θ + 2τxy sin θ cos θ, (9)

σ22 = σxx sin2 θ + σyy cos2 θ − 2τxy sin θ cos θ, (10)

τ12 = (−σxx + σyy) sin θ cos θ + τxy (cos2 θ − sin2 θ). (11)

These local stress values obtained using equations (9) to (11) for individual
laminas are used for constructing all the constraint equations as mentioned in
section 1.

3. OptiComp and Genetic Algorithm

OptiComp is a comprehensive optimization module developed using MAT-
LAB for optimal design of composite laminates, which can handle a variety of
laminate design problems involving different design objectives, constraints and
design variables [2]. OptiComp is developed by both the authors of this arti-
cle in order to provide a common platform for design optimization of composite
laminates. The user can choose a suitable optimization algorithm from a range
of algorithms incorporated in OptiComp software module. OptiComp provides
a choice of two approaches, namely, Uniform Thickness Approach and Variable
Thickness Approach to design a composite laminate. The length and width of the
plate, force components, material properties, design variables with increments and
limit bounds and maximum number of acceptable plies are to be provided as user
input while solving a problem using OptiComp.
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For the current study, Genetic Algorithm (GA) is selected as optimization
algorithm from the choice of algorithms provided by OptiComp. In the genetic al-
gorithm, the initial random population is improved using genetic operators like se-
lection, crossover and mutation, while selection has been carried out using Roulette
wheel method. In the current analysis, the following changes have been made in
GA to suit the problem of composite laminate design optimization.

1. Direct value coded representation is used for chromosomes instead of
binary-coded representation. This kind of representation facilitates han-
dling of multiple design variables of different nature in discrete form.

2. Direct value-coded chromosome representation can exactly catch increment
value for any design variable provided by the user within the limit bounds.
This is difficult in binary representation.

3. Single-point crossover function and mutation function are defined in such
a manner so as to suit the chromosome representation.

Let θL and θU be the lower and upper limiting values of the ply angles, while
tL and tU be the lower and upper limiting values of the ply thicknesses. Let the
increment values of ply angles and ply thicknesses within the given limiting bounds
be∆θ and∆t, respectively, as provided by the user. The vectors of acceptable values
of ply angles (θs) and ply thicknesses (ts) within the given limit bounds can be
developed as given below.

θs = {θ1s, θ2s, θ3s, θ4s, . . . , θns} ,

where θ1s = θL , θ2s = θL + ∆θ, θ3s = θL + 2 × ∆θ, . . . , θns = θU .

ts = {t1s, t2s, t3s, t4s, . . . , tns} ,

where t1s = tL , t2s = tL + ∆t, t3s = tL + 2 × ∆t, . . . , tns = tU .
In OptiComp, the genes of the chromosomes are represented directly by the

allowable angle values and ply thickness values randomly selected from acceptable
series instead of using classical binary representation. If the laminate is made up of
total 2n number of plies, then each chromosome will have 2n number of elements
in VTA. The first n number of elements of the chromosome are the randomly
selected ply angle values from the series (θs), while the remaining elements are the
randomly selected ply thickness values from the series (ts). The first and second
half of the chromosome have given separate treatment during crossover, as shown
in Fig. 4.

In mutation, one element of the angle values from the first half and one element
of the ply thickness values from the second half are selected from child chromosome
on random basis. These elements will be replaced by ply angle and ply thickness
value selected randomly from the corresponding acceptable series. The details of
crossover and mutation process are given in Fig. 4.

In UTA, all the laminas are having same thickness, so the genes of the chro-
mosomes are represented only by the allowable angle values selected randomly.
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Fig. 4. Chromosome representation, crossover and mutation in OptiComp

Each chromosome will carry n elements only because of symmetric nature of lam-
inate. The crossover and mutation process will be carried out by similar way, as
mentioned in Fig. 4.

4. Formulation of optimal design problems

Weight minimization of conventional 0◦, ±45◦ and 90◦ laminate with uniform
ply thickness 0.1 mm has been already carried out in [4] for load cases mentioned
in Table 1.

Table 1.
Different load cases used in the study

Load case Longitudinal force N/mm Transverse force N/mm Shear force N/mm
1 3000 3000 0
2 3000 3000 500
3 3000 3000 1000
4 −3000 −3000 0
5 −3000 −3000 500
6 −3000 −3000 1000
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These load cases are again considered in this article with an increased search
space. As the aim of this article is to demonstrate effectiveness of VTA for finding
minimum thickness of laminate, the article is divided in three parts.

i. In the first stage, the minimum laminate thickness solution is obtained
using UTA. In this stage, ply angles and number of plies are used as
design variables. Each lamina is made of thickness 0.1 mm. The ply angle
increment value is reduced to 15◦ within the range –75◦ to 90◦ to obtain
optimum weight and effect of ply angle increment value on optimal results
is also studied.

ii. In the second stage, the laminate thickness solution is obtained using VTA.
Earlier problem is modified by varying the ply thicknesses in discrete form
along with ply angles. The discrete values of ply thicknesses used in the
VTA analysis are 0.05 mm, 0.075 mm, 0.1 mm, 0.125 mm and 0.15 mm.
The number of layers for a particular load case obtained using UTA are
kept constant during VTA analysis to study effect of ply thickness variation
on minimum laminate thickness.

iii. In the third stage, the effect of different influencing design variables like ply
angle increment value ∆θ, ply thickness increment value ∆t and the number
of plies (Nmax) on effectiveness of VTA for finding minimum required
laminate thickness to sustain the applied load conditions is investigated.
During simulation, values of these influencing variables changed one by
one without affecting the remaining two variables used in earlier stage.

The problem statement for first stage can be mathematically expressed as

Problem 4.1 Find [Nmax, θn],

to minimize weight W = ρabT , *
,
T =

n∑
i=1

ti+
-

Subjected to satisfying
Maximum stress theory/Tsai Wu theory/Tsai Hill theory,
−75◦ 6 θn 6 90◦ (Ply angle incremental value 15◦),
tn = 0.1 mm
n = 1 to Nmax.
For the second stage, the problem statement can bemathematically expressed as

Problem 4.2 Find [θn, tn],

to minimize weight W = ρabT , *
,
T =

n∑
i=1

ti+
-

Subjected to satisfying
Maximum stress theory/Tsai Wu theory/Tsai Hill theory,
−75◦ 6 θn 6 90◦ (Ply angle incremental value 15◦),
0.05 6 tn 6 0.15 (Ply thickness incremental value 0.025 mm),
n = 1, . . . , Nmax (Nmax as obtained in earlier stage).
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The problem statement for third stage can be mathematically expressed as

Problem 4.3 Find [θn, tn],

to minimize weight W = ρabT , *
,
T =

n∑
i=1

ti+
-

Subjected to satisfying
Maximum stress theory/Tsai Wu theory/Tsai Hill theory,
−75◦ 6 θn 6 90◦ (Ply angle incremental value ∆θ),
0.05 6 tn 6 0.15 (Ply thickness incremental value ∆t mm),
n = 1, . . . , Nmax (Nmax considered as one of the variables).

5. Results

The simulation studies have been carried out for the problem statements men-
tioned in section 4 on specimen carbon/epoxy balanced symmetric laminate with
in plane dimensions a = 1000 mm, b = 1000 mm. The population size of 200 is
used for all simulation results presented in the paper. The physical properties of the
unidirectional carbon/epoxy laminate material are listed in Table 2 [4].

Table 2.
Material properties for carbon/epoxy

Property
E11 E22 G12 γ12

SLc SLt STc STt SLts ρ

[GPa] [GPa] [GPa] [MPa] [MPa] [MPa] [MPa] [MPa] kg/m3

Value 116.6 7.673 4.173 0.27 1701 2062 240 70 105 1605

5.1. Results of problem 4.1 for different load cases

Direct value-coded genetic algorithm selected from OptiComp with UTA op-
tion is applied for finding optimum weight of laminate for all the load cases
mentioned in Table 1. The obtained results in terms of number of plies, ply angle
stacking sequence and optimum weight/ laminate thickness are provided in Table 3
to Table 8 for load cases 1 to 6, respectively.

Ply angles are the dominating design variables when UTA is applied for design
optimization of composite laminates. In order to investigate the effect of ply angle
increment value on composite laminate design, minimum laminate thicknesses
obtained using 15◦ ply angle increment value and minimum laminate thicknesses
obtained using 45◦ ply angle increment value [4] are compared in Table 9.

The difference between reference results and the newly obtained results for 15◦
ply angle increment value goes on increasing with the increase in shear force value.
The maximum stress theory, as well as Tsai Wu theory, are susceptible to ply angle
increment value. It is observed that ply angle increment value has negligible or
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Table 3.
Optimum results for load case 1 by UTA

Load
Failure Laminate Weight

case
criteria Stacking sequence thickness [kg] by
(Nmax) [mm] OptiComp

1

MS
(66)

[-45/75/30/15/90/-30/602/-75/0/-45/-30/45/-30/-45/
-30/45/60/-60/-15/75/90/30/45/-15/75/-15/30/60/
-60/45/-45/30]s

6.6 10.593

TW
(72)

[-75/60/30/60/30/-30/75/30/15/0/45/-30/90/-15/-30/
-15/15/90/-30/75/-60/-30/-75/60/75/60/-15/45/-60/
-15/-30/-75/90/30/-75/-15]s

7.2 11.556

TH
(72)

[-60/60/75/0/-75/-30/-60/30/-45/-15/75/-15/-60/-15/
45/75/15/0/-45/90/-30/60/-75/45/60/0/60/-60/-15/
-60/45/15/30/60/0/-75]s

7.2 11.556

Table 4.
Optimum results for load case 2 by UTA

Load
Failure Laminate Weight

case
criteria Stacking sequence thickness [kg] by
(Nmax) [mm] OptiComp

2

MS
(66)

[753/60/75/0/45/60/75/0/-15/15/75/-15/-30/60/0/-15/
-302/752/902/75/60/-30/15/-15/0/75/15/75]s

6.6 10.593

TW
(72)

[60/75/02/-15/02/902/02/603/75/90/752/0/90/45/-15/
60/90/-15/60/ 15/03/-75/15/-452/902]s

7.2 11.556

TH
(72)

[752/60/-15/75/15/02/15/-15/-30/-15/15/90/0/75/0/
902/02/60/75/90/90/75/-30/75/30/75/60/90/02/75/
-15]s

7.2 11.556

Table 5.
Optimum results for load case 3 by UTA

Load
Failure Laminate Weight

case
criteria Stacking sequence thickness [kg] by
(Nmax) [mm] OptiComp

3

MS
(68)

[75/15/-15/0/60/75/-15/15/75/45/752/-30/75/-15/90/
-15/60/60/-30/90/30/75/90/-15/60/-15/15/-15/90/0/
45/75/-30]s

6.8 10.918

TW
(72)

[-152/752/152/75/90/30/0/75/15/90/75/60/752/152/
75/15/-15/75/-75/752/0/15/30/-60/30/15/90/60/0/
-15]s

7.2 11.556

TH
(72)

[-30/-45/60/0/60/75/45/-30/0/602/-30/60/-15/60/
-302/75/-15/-302/-15/15/75/-45/90/60/75/90/602/
30/-15/75/-15/60]s

7.2 11.556
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Table 6.
Optimum results for load case 4 by UTA

Load
Failure Laminate Weight

case
criteria Stacking sequence thickness [kg] by
(Nmax) [mm] OptiComp

4

MS
(34)

[-15/-45/02/15/75/90/45/-45/90/-15/0/60/90/75/-30/
75]s 3.4 5.457

TW
(32) [15/-75/-30/30/-602/75/15/602/45/-45/75/-15/0/-45]s 3.2 5.136

TH
(38)

[-30/45/-15/45/-30/-60/-30/0/75/-45/602/75/-45/45/
-45/-15/602]s

3.8 6.099

Table 7.
Optimum results for load case 5 by UTA

Load
Failure Laminate Weight

case
criteria Stacking sequence thickness [kg] by
(Nmax) [mm] OptiComp

5

MS
(34)

[-30/-15/-30/75/-302/75/-15/75/-30/30/75/90/0/75/
-30/90]s 3.4 5.457

TW
(32)

[-60/60/-45/30/-75/60/75/-15/-452/30/-75/-15/15/
-45/-30]s 3.2 5.136

TH
(38)

[02/-75/0/90/75/-75/-45/75/90/-60/0/15/-30/-75/-30/
60/-30/0]s 3.8 6.099

Table 8.
Optimum results for load case 6 by UTA

Load
Failure Laminate Weight

case
criteria Stacking sequence thickness [kg] by
(Nmax) [mm] OptiComp

6

MS
(34) [-30/15/-302/ 752/-30/602/-302/-15/752/-302/75]s 3.4 5.457

TW
(32) [75/-45/15/-15/75/60/-75/-60/-302/-452/-15/0/-602]s 3.2 5.136

TH
(38)

[30/-15/90/60/02/-15/-75/-45/-30/-45/-30/-60/60/
90/-452/-60/75]s

3.8 6.099

very small effect on laminate thickness when laminate is subjected to pure biaxial
force condition only. Ply angle increment value has major impact on design of
laminates subjected to a significant amount of shear forces along with in plane
biaxial loads.

The laminate thickness obtained using UTA does not represent true lowest
possible laminate thickness for that load case, as UTA constraints all the plies to
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Table 9.
Optimum laminate thicknesses for different ply angle increment values

Load Failure
Laminate thickness in mm Laminate thickness in mm

case criteria
for ply angle increment for ply angle increment

value 45◦ [4] value 15◦

MS 6.8 6.6
1 TW 7.2 7.2

TH∗ – 7.2

MS 7.2 6.6
2 TW 7.6 7.2

TH∗ – 7.2

MS 8 6.8
3 TW 8 7.2

TH∗ – 7.2

MS 3.6 3.4
4 TW 3.2 3.2

TH∗ – 3.8

MS 4 3.4
5 TW 3.6 3.2

TH∗ – 3.8

MS 4.4 3.4
6 TW 3.6 3.2

TH∗ – 3.8

∗ reference results are not available

have same thickness. To get the real representation of minimum laminate thickness
required for a particular case, it is necessary to vary ply thickness along with
ply angle.

5.2. Results of problem 4.2 for different load cases

The VTA strategy is applied for all the load cases mentioned in Table 1 and the
obtained results are provided in Table 10 to Table 15. In all the results, T denotes
the obtained minimum laminate thickness required to sustain the applied load for
given number of plies. The meaning of the obtained stacking sequences in terms
of ply angles and ply thicknesses is explained in Fig. 5.

Majority of researchers are using UTA for weight minimization of composite
laminate. The laminate thicknesses obtained using UTA with ply angle increment
value 15◦ and VTA are compared with the reference laminate thicknesses [4] in
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Table 10.
Optimum results for load case 1 using VTA

Load
Failure Average Weight

case
criteria Stacking sequence thickness [kg] by
(Nmax) T [mm] OptiComp

1

MS
(66)

θn = [75/0/-60/02/152/-45/30/-60/-45/75/45/-60/90/75/45/
-30/45/-45/60/-60/60/-60/30/15/60/-45/15/-30/0/30/90]s
tn = [0.1/0.075/0.1/0.075/0.13/0.0752/0.1/0.075/0.1252/
0.15/0.12/0.125/0.15/0.05/0.1/0.075/0.13/0.05/0.075/0.1/
0.075/0.15/0.075/0.1/0.15/0.125]s

0.0963
(6.55) 10.512

TW
(72)

θn = [-15/-75/90/30/-60/60/45/-60/75/02/-30/-45/75/-15/
60/75/-60/90/0/752/60/-15/45/-452/30/02/-30/-15/-45/0/
75/60]s
tn = [0.075/0.1/0.075/0.125/0.05/0.15/0.075/0.1/0.125/
0.075/0.125/0.053/0.15/0.1/0.05/0.012/0.075/0.125/0.15/
0.102/0.125/0.12/0.1253/0.05/0.1/0.125/0.075/0.12]s

0.0979
(7.05) 11.315

TH
(72)

θn = [-30/-60/60/15/-60/45/-60/-45/152/90/0/-602/0/-15/
15/0/752/30/75/-75/90/-15/30/-15/-75/60/0/75/15/-45/
60/45/75]s
tn = [0.125/0.12/0.05/0.15/0.1/0.1252/0.075/0.1/0.075/
0.125/0.075/0.052/0.15/0.1/0.075/0.05/0.12/0.125/0.075/
0.13/0.1252/0.075/0.1/0.125/0.075/0.1/0.075/0.1/0.125]s

0.0979
(7.05) 11.315

Table 11.
Optimum results for load case 2 using VTA

Load
Failure Average Weight

case
criteria Stacking sequence thickness [kg] by
(Nmax) T [mm] OptiComp

2

MS
(66)

θn = [75/60/15/60/-60/90/-60/15/45/75/-60/75/15/30/60/
-75/45/75/45/0/-15/30/15/90/-302/0/15/-60/60/75/02]s
tn = [0.12/0.125/0.1/0.0752/0.1/0.075/0.15/0.075/0.12/
0.05/0.0752/0.15/0.075/0.1/0.15/0.1/0.075/0.15/0.05/
0.15/0.1252/ 0.1/0.075/0.15/0.05/ 0.1/ 0.125/0.05]s

0.0963
(6.55) 10.512

TW
(72)

θn = [30/75/-45/-15/45/60/30/75/-15/60/-15/75/45/45/
-75/-15/-60/60/90/45/0/75/0/452/30/75/302/-45/75/-30/
60/-60/15/-45]s
tn = 0.125/0.075/0.125/0.15/0.052/0.1/0.15/0.1/0.075/0.1/
0.075/0.1/0.125/0.1/0.125/0.05/0.1/0.125/0.05/0.125/0.1/
0.075/0.1/0.125/0.052/0.15/0.05/0.125/0.15/0.0752/0.1/
0.075/0.150]s

0.0979
(7.05) 11.315

TH
(72)

θn = [-45/02/15/-15/752/-30/-60/45/152/-60/75/-60/90/
-75/15/45/75/15/45/-45/152/90/75/60/-45/75/02/30/45/
75/30]s
tn = [0.075/0.125/ 0.075/ 0.125/0.075/ 0.1/0.15/0.12/
0.125/0.075/0.125/0.075/0.15/0.1/0.075/0.125/0.075/
0.125/0.0752/0.1/0.075/0.05/0.1/0.125/0.1/0.05/0.125/
0.12/0.075/0.1/0.075/0.125/0.1]s

0.0979
(7.05) 11.315



VARIABLE THICKNESS APPROACH FOR FINDING MINIMUM LAMINATE THICKNESS . . . 543

Table 12.
Optimum results for load case 3 using VTA

Load
Failure Average Weight

case
criteria Stacking sequence thickness [kg] by
(Nmax) T [mm] OptiComp

3

MS
(68)

θn = [452/15/-60/45/30/0/45/60/75/-30/45/-75/90/
45/60/-302/45/602/30/60/75/-30/15/-45/30/15/45/
15/60/45/90]s
tn = [0.15/0.125/0.075/0.15/0.1/0.125/0.05/0.1252/
0.05/0.1252/0.1/0.052/0.0752/0.125/0.1/0.125/0.05/
0.125/0.075/0.1/0.0753/0.15/0.1/0.125/0.075/
0.052/0.15]s

0.097
(6.6) 10.593

TW
(72)

θn = [452/90/0/75/45/15/60/-45/30/45/15/75/-60/0/
30/-15/60/0/30/-60/30/75/-15/60/45/-30/75/-15/30/
75/60/752/-60/-30]s
tn = 0.0753/0.125/0.075/0.15/0.125/0.1/0.052/
0.075/0.15/0.125/0.05/0.1/0.05/0.125/0.15/0.05/
0.125/0.075/0.125/0.075/ 0.125/0.0753/0.12/0.125/
0.15/0.1/0.125/0.125/0.075/0.1]s

0.098
(7.05) 11.315

TH
(72)

θn = [15/45/90/75/60/30/-30/45/-60/0/60/15/0/60/
-75/-30/15/-75/60/75/30/90/45/60/45/15/-15/0/-45/
30/45/30/602/-30/45]s
tn = [ 0.13/0.15/0.125/0.05/0.075/0.1/0.125/0.075/
0.1/0.125/0.15/ 0.125/0.053/0.125/0.1/0.05/0.0752/
0.1/0.1252/0.05/0.125/0.12/0.05/0.125/0.1/0.15/
0.075/0.15/0.075]s

0.098
(7.05) 11.315

Table 13.
Optimum results for load case 4 using VTA

Load
Failure Average Weight

case
criteria Stacking sequence thickness [kg] by
(Nmax) T [mm] OptiComp

4

MS
(34)

θn = [-45/0/15/-30/-60/45/60/30/75/-60/0/90/-60/
60/15/-45/75]s
tn = [0.1/0.075/0.075/0.12/0.15/0.05/0.12/0.075/
0.125/0.075/0.13/0.125/0.1]s

0.097
(3.3) 5.296

TW
(32)

θn = [60/15/75/60/-60/45/-30/ 90/-453/30/15/-302/
30]s
tn = [ 0.13/0.15/0.052/0.1252/0.1/0.15/0.0752/
0.052/0.075/0.15]s

0.0953
(3.05) 4.895

TH
(38)

θn = [15/45/0/-30/-603/752/-30/-152/75/90/15/75/
15/45/90]s
tn = [0.075/0.15/0.125/0.0752/0.075/0.15/0.12/
0.125/0.1/0.125/0.1/0.05 /0.075/0.12/0.0752]s

0.097
(3.7) 5.938
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Table 14.
Optimum results for load case 5 using VTA

Load
Failure Average Weight

case
criteria Stacking sequence thickness [kg] by
(Nmax) T [mm] OptiComp

5

MS
(34)

θn = [0/-15/75/30/03/-60/-75/-45/45/-60/75/-45/
-60/75/-75]s
tn = [0.125/0.15/0.125/0.1/0.075/0.05/0.1/0.0752/
0.15/0.0752/0.125/0.1/0.125/0.05/0.075]s

0.097
(3.3) 5.296

TW
(32)

θn = [45/-15/-60/0/-45/-30/30/-75/-60/30/602/-45/
-60/30/-30]s
tn = [0.052/0.1252/0.05/0.1/0.125/0.15/0.125/0.12/
0.075/0.125/0.1/0.05/0.075]s

0.0953
(3.05) 4.895

TH
(38)

θn = [-45/75/-60/-45/-302/60/0/15/-45/45/-30/75/-
45/30/-15/75/60/90]s
tn = [0.125/0.075/0.125/0.15/0.1/0.075/0.15/0.125/
0.0753/0.125/ 0.05/0.1/0.125/0.075/0.05/0.075
/0.125]s

0.098
(3.75) 6.018

Table 15.
Optimum results for load case 6 using VTA

Load
Failure Average Weight

case
criteria Stacking sequence thickness [kg] by
(Nmax) T [mm] OptiComp

6

MS
(34)

θn = [-60/-45-45-45/-30/-15/15/-15/-75/-60/30/-60/
75/-60/45/-45/-75]s
tn = [0.1/0.05/0.1254/0.15/0.1/0.05/0.075/0.1/
0.075/0.152/0.075/ 0.05/ 0.075]s

0.1
(3.4) 5.457

TW
(32)

θn = [-45/-60/-45/-75/0/-453/60/45/-75/60/-30/
30/0/-45]s
tn = [0.0752/0.1/0.1252/0.1/0.1252/0.1/0.05/0.1/
0.075/0.125/0.075/0.1/ 0.05]s

0.095
(3.05) 4.895

TH
(38)

θn = [-302/75/60/75/15/-45/-30/602/-30/0/-75/-45/
0/-60/-15/45/-60]s
tn = [0.05/0.1/0.0752/0.05/0.075/0.1/0.1252/0.1/
0.075/0.1/0.125/0.12/0.152/0.075/0.15]s

0.098
(3.75) 6.018

Table 16 for all the load cases. Comparison of these results exposes limitations of
UTA and effectiveness of VTA while calculating minimum laminate thickness for
the applied load condition.

The reduction in laminate weight/thickness obtained using VTA over the ref-
erence results for all the load cases is the combined outcome of reduced ply angle
increment value and ply thicknesses in discrete form. So, drastic reduction in lam-
inate weight/ thickness is observed using VTA for all the load cases. In zero shear
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Fig. 5. Explanation of the optimum stacking sequences obtained in terms of ply angles and ply
thicknesses

Table 16.
Comparison of optimum thicknesses obtained at different stages
Laminate Laminate Laminate % reduction % reduction

Load Failure thickness thickness thickness by in thickness in thickness
case criteria by [4] using UTA VTA strategy using UTA- over using VTA- over

[mm] (15◦) [mm] [mm] reference thickness reference thickness
MS 6.8 6.6 6.55 2.94 3.68

1 TW 7.2 7.2 7.05 0 2
TH∗ – 7.2 7.05 – 2∗∗

MS 7.2 6.6 6.55 2.94 3.68
2 TW 7.6 7.2 7.05 2.69 4.67

TH∗ – 7.2 7.05 – 2∗∗

MS 8 6.8 6.6 14.96 17.5
3 TW 8 7.2 7.05 10 11.87

TH∗ – 7.2 7.05 – 2∗∗

MS 3.6 3.4 3.3 5.55 8.34
4 TW 3.2 3.2 3.05 0 4.7

TH∗ – 3.8 3.7 – 2.63∗∗

MS 4 3.4 3.3 10.32 17.5
5 TW 3.6 3.2 3.05 11.11 15.28

TH∗ – 3.8 3.75 – 1.31∗∗

MS 4.4 3.4 3.4 22 22
6 TW 3.6 3.2 3.05 20 23.75

TH∗ – 3.8 3.75 – 1.31∗∗

∗ Reference results not available;
∗∗ Percentage difference against UTA results for 15◦ ply angle increment value.
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force cases (1 and 4) also, VTA can reduce the laminate thickness, which is the
effect of discrete values of ply thicknesses. The comparison of the ply thicknesses
obtained at different levels of analysis for all load cases under tensile loading and
compressive loadings is provided in Fig. 6 and Fig. 7, respectively. Subscripts 1 to 6
denotes different load cases, while UTA 45 and UTA 15 denote ply angle increment
values used for UTA in Fig. 6 and Fig. 7. It is observed that VTA produced maxi-
mum laminate thickness reduction of 23.75% for load case 6 over reference results.

Fig. 6. Comparison of laminate thicknesses for biaxial tensile load cases

Fig. 7. Comparison of laminate thicknesses for biaxial compressive load cases

5.3. Results of problem 4.3 for different load cases

Even though, VTA results in reduced optimum weight for all the load cases, it
also carries manufacturing complexity. Variable thickness composite structures can
be fabricated by ply drops and splicing, which are not necessarily cost-efficient due
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to their high manufacturing cost. Though, it can be preferred for designing highly
critical aerospace components [16]. Unlike the two stage methodologies defined by
previous researchers [14, 16], VTA can be efficiently used for calculating minimum
laminate thickness required for sustaining the applied load in one stage only. In
this section, load case 2 is considered for demonstrative purpose and performance
of VTA while calculating minimum laminate thickness is tested against variation
in different design variables like the number of layers and increment value of ply
angles and ply thicknesses within given limit bounds.

5.3.1. Effect of number of plies on VTA

In section 5.1, it is observed that the number of plies required to sustain load
case 2 are 66, 72 and 72 for maximum stress theory, Tsai Wu theory and Tsai
Hill theory, respectively. These values are in near vicinity to 70. Investigation of
the effect of number plies on performance of VTA for load case 2 can be done
by selecting number of plies other than 70. With this consideration, the minimum
laminate thickness is obtained for an arbitrary selected number of layers 50, 60
and 80 using VTA without changing other design variables mentioned in 4.2. The
obtained results are provided in Table 17.

Table 17.
Minimum laminate thickness for different number of layers using VTA

Laminate thickness
Load Number Failure Laminate

already obtained
case of layers theory thickness

(number of layers)

MS 6.65 6.55 (66)
50 TW 7.1 7.05 (72)

TH 7.05 7.05 (72)
MS 6.55 6.55 (66)

2 60 TW 7.1 7.05 (72)
TH 7.05 7.05 (72)
MS 6.6 6.55 (66)

80 TW 7.1 7.05 (72)
TH 7.05 7.05 (72)

The number of layers affects the performance of VTA in this regards to a
certain extent. Excessively small number of layers or very high number of layers
may affect the performance of VTA. In such cases, performance of VTA can be
improved by selecting wide range between limit bounds of ply thicknesses or by
reducing ply thickness increment value within limit bounds.
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5.3.2. Effect of ply thickness increment value on VTA

Now, problem 4.3 is solved for obtainingminimum laminate thickness by using
different ply thickness increment values within the limits 0.05 mm to 0.15 mm
keeping ply angles and number of layers unaffected. The obtained results are
provided in Table 18.

Table 18.
Minimum laminate thickness for load case 2 with reduced ply thickness increment value

Load Number Failure
Laminate thickness Laminate thickness Laminate thickness

case of layers theory
with 0.01 mm with 0.025 mm with 0.05 mm
increment increment increment

66 MS 6.52 6.55 6.55
2 72 TW 7.04 7.05 7.1

72 TH 7.02 7.05 7.1

The results provided in Table 18 show that ply thickness increment value
0.01mmgivesmore accurateminimum laminate thickness for load case 2 compared
to higher ply thickness incremental values for all the failure theories.

5.3.3. Effect of ply angle increment value on VTA

The performance of VTA in terms of laminate thickness calculations is tested
against ply angle increment value for load case 2 keeping ply thicknesses and
number of layers unaffected, and the obtained results are provided in Table 19.

Table 19.
Minimum laminate thickness for load case 2 against ply angle increment value

Load Number Failure
Laminate thickness Laminate thickness Laminate thickness

case of layers theory
with 5◦ angle with 15◦ angle with 45◦ angle
increment increment increment

66 MS 6.55 6.55 6.55
2 72 TW 7.05 7.05 7.05

72 TH 7.05 7.05 7.05

The obtained results show that the ply angle increment value does not affect
performance of VTA while calculating minimum laminate thickness.

6. Conclusions

The current article deals with demonstration of effectiveness of Variable Thick-
ness Approach (VTA) for finding minimum required laminate thickness to sustain
the applied load condition. Initially, Uniform Thickness Approach (UTA) is used
for minimizing weight/thickness of laminate with reduced ply angle increment
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value 15◦. It is observed that reduction in ply angle increment value is not that
much effective in weight reduction when shear force is not acting along with biaxial
forces. At the same time, because of constraint of working with uniform thickness,
UTA cannot reach to minimum required laminate thickness for any load case. VTA
can be used to overcome this limitation of UTA and has the ability to find minimum
required laminate thickness with substantial accuracy in one stage only. The results
provided in Graph 1 and Graph 2 prove capability of VTA in obtaining minimum
laminate thickness for any load case as well as for any failure theory. Because of
the use of all the design variables in discrete form and handling of different design
variables simultaneously, VTA is computationally efficient. The obtained results
show that number of plies and ply thickness increment value significantly affect
performance of VTA, while ply angle increment value hardly affects performance
of VTA in this regards. VTA can be coupled with any other optimization algorithm
for this purpose, which can handle multiple design variables of different nature in
discrete form simultaneously.
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