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Abstract

In this paper, a comparison analysis of three @iffealgorithms for the estimation of sine signatgmeters i
two-channel common ftpiency situations is presented. The relevanceigfsituation is clearly understood
multiple applications where the algorithms haverbagplied. They include impedance measurementsy
currents testing, laser anemometry and radio receisting ér example. The three algorithms belon
different categories because they are based oereliff approaches. The ellipse fit algorithm is epeetric fi
based on the XY plot of the samples of both signBfe seven parameter sine fit algorithm is a legstare
algorithm based on the time domain fitting of agéintone sinewave model to the acquired samples
spectral sinc fit performs a fitting in the freqegrdomain of the exact model of an acquired sinenwav th
acquired spectrum. Multipleimulation situations and real measurements areidad in the comparison
demonstrate the weaknesses and strong points lofadgarithm.

Keywords: sinewave parameter estimation, ampliam phase measurements, seven parameter sirkpie e
fit, spectral sinc fit.
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1. Introduction

Scientific and technological evolution dependstmndbility to measure physical quantities
with ever increasing accuracy. Researchers inngteuimentation and measurement field have
produced both hardware and software innovations éhable very accurate measurements.
Special attention has been given to signal prooegsaigorithms such as the ones used to
estimate the parameters of acquired sinewaves. nBeel for algorithms that allow the
characterization of analog to digital converters tlee IEEE to include in the 1057 standard
[1] two algorithms that estimate sinewave paransetdre three-parameter sine fit and the
four-parameter sine fit algorithms. The former ged to estimate the sinewave parameters
when its frequency is known, while the last one@sed when either the signal frequency or
the sampling frequency are not accurately known.

For many applications, such as impedance measutsrnign eddy currents testing [3],
laser anemometry [4], radio receiver testing [5¢l aneasurements of active and reactive
power under sinusoidal conditions [6, 7], theraiseed to estimate the parameters of two
common frequency sinewaves usually acquired simedtasly. To this end, an extension of
the algorithms standardized in [1] was developeatiiafkknown as the seven-parameter sine fit
algorithm [8], which uses the data from both chdsmaed takes advantage of the fact that the
frequency is the same for both sinewaves. Thisrdgo has since been adapted for efficient
implementation in DSP systems [9]. A different ayguh, based on the XY plot of the two
common frequency sinewaves has produced the efiipasigorithm [10], which has also been
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modified to be implemented in DSP applications [1Rgcently, a new algorithm called
spectral sinc fit [12] has been developed to egartize two sinewave parameters. It relies on
the fitting of the exact theoretical spectrum afiadowed sinewave to the spectral content of
the acquired sinewaves.

In this paper, the performance of the ellipsesilyen-parameter sine fit and spectral sinc
fit algorithms is analyzed and compared. Using ®esitee numerical simulations the accuracy
and precision of the amplitude ratio and phasesdifice of the two sinewaves is studied as a
function of signal to noise ratio, sine amplitudesl sine phase difference. For the sinc fit and
sine fit algorithms, an analysis of the estimatezhjdiency accuracy and precision is also
performed. This analysis is not possible in thgsd fit algorithm since the frequency is not
estimated. The results are also compared to then&rRao lower bound of two common
frequency sinewave parameter estimators, developgd8]. The analysis and comparison of
the three algorithms is complemented with measunémesults of two acquired sinewaves
with added noise. The multiple acquisitions arentpeocessed by each algorithm to assess
their accuracy in a practical situation.

The paper is divided into five sections includithg tntroduction and the Conclusions. In
Section 2, a detailed overview of the three alpong under analysis is given. Section 3
presents the results of the numerical simulatieréopmed for each algorithm. A comparison
between the three algorithms and the Cramer-Raerlboaund is also presented here. Finally,
the measurement results are presented and anahySedtion 4.

2. The algorithms

This section describes the three algorithms condparethis paper: ellipse fit; seven-
parameter sine fit; and spectral sinc fit. The goflthese algorithms is to estimate the
amplitudedD; and phasek; of two acquired sinewaves modeled by:

u (t) = D cog( Dft+f )+ G= A cog2pft)+ B sif2pf) + C (1)

wherei is the channel number£1, 2),A is the in-phase and the quadrature component of
each sinewave. Some algorithms also estimate thec@@ponentsC; and the common
frequencyf.

In most two-channel applications the value of thgktude and phase of each signal is not
required. The only values needed are the amplied® D,/D; and phase difference
Dj=f ;f ,. However, some algorithms require that the freqyérmust also be estimated

since it is not accurately known. This is due te tincertainty of the generated sinewaves
frequencyf and uncertainty of the sampling frequemhgcy

The Cramér-Rao lower bounds (CRLB) for parametémesion of dual-channel common
frequency sinewaves was determined in [13] for abiased estimator under a Gaussian
assumption using the signal to noise ratio defasd

D?

SNR =—-,
R 2s’?

(2)

wheres? is the variance of the zero-mean Gaussian whiteraf signal.
For the relative amplitude ratio, the standard aléen that corresponds to the CRLB is:

S,/ _ SNR;+ SNR, 3)
D,/D, \NSNR,SNR,
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while the standard deviation that corresponds édotbund of the phase difference is:

5o, []= 1§0\/SNR1+ SNR, @

NSNR, SNR,

and the normalized standard deviation that cormdpao the bound of the estimated
frequency is:

. = 12 5)
+© \(2p)*N3(SNR+ SNR)

In this section, the sinewave parameter extracitonlustrated for each of the three
algorithms using two simulated sinewaves sampled.at 96 kS < with N = 200 samples.
The waves parameters &dg=1V,D, =0.25V, f =1kHz andDj= 25 . A signal to noise
ratio SNR = 30 dB was considered in both sinewaves.

2.1. Ellipse fit

The ellipse fit algorithm was first developed id][Jand improved for numerical stability in
[10]. It was then proposed as a non-iterative plaoe to estimate the amplitudes and phase
difference of two common frequency sinewaves [15].

The time dependence of the sinewaves can be destéylparametrically plotting the two
sinewaves in a XY plot, creating a Lissajous cuSice the two sinewaves have the same
frequency, the figure will be an ellipse, exceptewhthe two waveforms are in phase or
opposition which makes the ellipse degenerateargtraight line.

Algebraically, the time dependence in (1) can lmiahted by rewriting them as:

2 2

woo,

= -2 U coqpj ) s 3 0 (6)

U
D2 D1D2

which is the ellipse equation. This correspond$héogeneral conic [9]:

F(u,u)=ak+byy+ cd+ dy+ ep+ g0 7
with the constraintD =b” - 4ac< 0 so that the conic is an ellipse which correspotals
Djt p with n . This constraint can be, by scaling of the cofly {ransformed into
b’ - 4ac=- 1.

The conic model (7) is fitted to the sinewave data a non-iterative constrained
minimization process based on Lagrange multipli#g§, which yields the model parameters

[a,b,c, d, e d. The sine amplitudes are given by:
(8)

Dl D2

-1 =L
Jka' Jke'
where k is the scaling factor to ensuref - 4ac=- 1. The phase differenc®j can be
determined by:

cos(Dj )= - —Sig:'/g b ©)
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while its sign is obtained by observing the rotatatirection of the ellipse. To avoid errors
due to the presence of noise, a voting system wgpéemented to determine the rotation
direction as described in [11].

The amplitude rati®,/D; is:

P_ |2 (10)
c

and is independent of the scaling fadtor

Fig. 1 illustrates the ellipse fit procedure wikie ttwo sampled sinewaves plotted in an XY
plot. The dots represent the noisy sinewave datagpand the line shows the ellipse fitted by
the procedure described above.

Fig. 1. Ellipse fit of two sinewaves with; =1 V,D,=0.25 V,f =1 kHz,Dj = 25 andN = 200. The dots
represent the sampled data and the line reprethentisted ellipse.

The original ellipse fit implementation [10] was difted in [11] to require only the
construction of3” 3 matrices with a total of only 18 different eleme(ftsats) independently
of the number of samples. This is a major advantagerms of memory requirements of the
algorithm.

2.2. Seven-parameter sine fit

Sine fitting algorithms were standardized in [1} #®DC characterization. In the three-
parameter version, the amplitude, phase and DC coemt of an acquired sinewave, of
known frequency, are estimated in a non-iteratea&st-squares procedure. Since in most
cases the frequency is not accurately known, theffarameter sine fit version estimates the
sinewave amplitude, DC component and phase alotlg #& frequency. In this case the
algorithm becomes non-linear and an iterative noealr least-squares procedure is needed.
The three- and four-parameter sine fit algorithmes saitable for single-channel data and can
be independently applied to multi-channel data.

The seven-parameter sine fit algorithm was develope an extension of the four-
parameter algorithm for dual channel applicatiorisen® the two signals have the same
frequency [8]. In each iteratioon the algorithm estimates the sinewave parameters

(M= Mg I pf* AT B d ', where D™ is the frequency correction for the
current iteration. These estimates are obtainad:fro
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-1

(™ = (D(ml))T p(m3 (D(mn)Ty , (11)

T . .
wherey = u, U, Uy U,,U,, Uy containsN samples of both signals and

(m-1) (m 1)
D(m_]_) — Q]_ pl ON,3 ’ (12)

Oy, P Qi

where 0, , is aNx3 zero matrix and

cosb,) sinlb,) 1 a;,

Qi(m-1): COS(bi’Z) Sir(bi,z) 1, pi(m-l): ai,2 (13)

cos(bi]N) sir(bi’N) 1 Ain

with b, =w™% anda, =-pA™ sinb , J+ ® B™ Yt cog,,) wheret, are the

timestamps of signal

The initial estimates are obtained from the int&afeal Discrete Fourier Transform
(IpDFT) which yields a good frequency estimatior6][1The three-parameter algorithm is
then used in each signal to estimate the remathingial parameters. The iterative procedure
terminates when a predefined maximum number cdtitans is reached (nonconvergence) or
the relative frequency correctiddf / f is below a certain threshold (convergence).

In Fig. 2, the sampled sinewaves are shown witk (fotu;) and crosses (far,) while the
sinewaves reconstructed with the parameters estthiat the sine fit algorithm are shown by
continuous lines.

Fig. 2. Seven-parameter sine fit of two sinewavigs v, = 1 V,D, = 0.25 V,f =1 kHz, Dj = 25 andN = 200.

The dots represent tlug sampled data, the crosses representtsampled data and the lines represent the
reconstructed sinewaves.

This algorithm involves the creation of a matrix2Nx7 floating-point numbers. As the
number of samples increases, the memory requirenvahtlimit the algorithm applicability
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in a DSP implementation. In [9], a more efficierdrsion is presented that requires only
3N+63 floating-point memory positions.

2.3. Spectral sinc fit

The spectral sinc fit algorithm has been recentbppsed as a new method to estimate the
parameters of an acquired sinewave [12]. The methdoased on fitting the theoretical
frequency spectrum on the spectrum of the measigedls. The spectral sinc fit method has
been extended to be applied to two-channel commemuéncy acquisitions.

The acquisition of a limited number of samples gsiiealent to applying a rectangular
window to the sinewaves. The theoretical spectrisuoh a sinewave is [12]:

X[4=0f§=2 Wop-p o dr Wi ¢ 9

wherek T [-N/2+1; N/2] andW(w) is the spectrum of a rectangular winddw;, an aliased
sinc function:

W
2N e
w(w)=—=—e="", (15)
sin —
2

The resulting two-sided spectruf(g [k] consists of two overlapping aliased sinc functions
centered attw, =+2pf/f,. The maximums oDZi[k] are not centered at the frequencies
+w, due to the leakage of one sinc into the othereNwat in model (14), the DC component
Ci is not included since in most applications it @ Mmportant (it does not carry information
about the measured quantity).

The algorithm searches for the sinewaves paramgigrsninimize the cost functions:

Kmax+1

6= (DPIK-XJ8)+(PP.L] XK, (16)

K=Knayx-1

where X, [k] is the spectrum of each acquired signal.

From (16) it can be seen that the cost functioeseamluated in only three points of the
spectrum, the point where the measured amplitudetnspn[xi[k” has its maximumkg,ay)
and the two neighboring points.

The algorithm exploits the fact that the relationwsen the theoretical spectrubﬁi [k]
and the amplitudeD, is linear (see (14)) to reduce the number of egBoh parameters to
three: two phases and the common frequency. TheitaagID, is then calculated using the
estimated parameters:

Kmax+1

LRSS RS
D = =knax-1

| AT AT)

k= Knax' 1

. (17)
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The search for the minimums is an iterative procedoat uses the Gauss-Newton method.
The initial frequency estimate is obtained by tip®FT [16] and the remaining initial
parameters are obtained by applying the three-patearsine fit to each measured signal.

In order to compensate for the possible differégrad to noise ratios in each of the two
measured signals (due &g, noise, spurious components, harmonic distor}joims each
iteration weights are assigned to each signal aed in the Gauss-Newton method:

(m-12)

r
T e
f(zm) - f(zml)_ Jmy T 1 Wle Oge  Tim (18)
f(m) f(ml) maX(Wsz) 06,6 Wzle I‘z(TQ'Gl)

(m-12)

I m

wherew; are the weightsls is a 6x6 identity matrixQs ¢ is a 6x6 zero matrix[J]T is the
pseudo-inverse of the Jacobian mafithe superscripinf) denotes the iteration number and
ri are the fitting residuals:

DB k- 2} X[ 1
= IR X[k 19)
DB [+ X[ Kt 3

The weightswn; are the LS errors, calculated in the time domaitha difference between
the measured signal and the signal reconstruciad tie current estimates of the parameters.

The search ends when the relative change of thgudrey estimate drops below a
threshold or when the preset maximum number ohtiens is exceeded. The weighisare
used to estimate the Cramér-Rao lower bound (CRIifBjequency estimation [13] which is
then used to adjust the threshold level. This adaetting of the threshold level has an
advantage over using a fixed setting because wepts the threshold level to be set
unrealistically low (below the CRLB) or too high.

The main advantage of this algorithm is that tleeative part can be accurately computed
using as little as three sample points per sigtied (hree values of in (16)) making it
memory wise very efficient since only the initiaF s are done with the full number of
acquired samples.

Fig. 3 shows an example of amplitude spectrumswaf sampled sinewaves and the
spectrums that were fitted on them.

f/‘\m

Fig. 3. Spectral sinc fit: positive frequenciedtud two-sided amplitude spectrums of two sinewaves
(D;=1V,D,=0.25V,f=1kHz,Dj= 25 andN = 200) and the fitted spectrum.
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3. Numerical simulations

To assess the performance of the three algorittimey, were implemented in Matlab and
several tests were executed. Since the ultimateigoa estimate the amplitude ratiDAD)
and the phase differencBj(), the tests estimated the amplitude ratio errer,(ihe difference
between the estimated amplitude ratio and the iegboatio) as well as the phase difference
error. For each set of tested parameters, 100 Gf#emt runs were executed to obtain the
average values and the corresponding standardtesgaln each run, the initial phase of the
first signal 1) is a random variable with a uniform pdf betwed®0° and 180°. Signal
frequency is 1 kHz and 1920 samples per channdben at 96 kS/s. White Gaussian noise
Is added according to each signal’s signal-to-nmasie (SNR).

3.1. Signal to noise ratio analysis

In this analysis, the signal amplitudes are fix¢dDg1V andD,=0.25 V. Since it is
known that the ellipse fit algorithm cannot workanBj =180° andDj =0° because of ellipse
degeneration, the phase difference is a uniformirpdtie £[10°;170°] range. This issue will

be analyzed and discussed in Section 3.3.

The results for the ellipse fit are shown in Figadd Fig. 5. It can be seen that the
algorithm is biased for signal to noise ratios ¢tghly below 40 dB. As expected, the standard
deviations are reduced with the increase in SNR.
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Fig. 4. Average amplitude ratio error (A) and cepending standard deviation (B) for the ellipse fit
algorithm as a function of the two signal to naiatos forD,=1 V andD,=0.25 V.
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Fig. 5. Average phase difference error (A) andesponding standard deviation (B) for the ellipse fi
algorithm as a function of the two signal to naiatos forD;=1 V andD,=0.25 V.
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Note that the fluctuations in the results of therage phase errors (Fig. 5A) for the lowest
signal to noise ratios are caused by the finite memof repetitions and that the corresponding
standard deviations are considerably higher tham répresented fluctuatiore.@, for
SNR=30 dB the average error-i8.005° and the standard deviation is 0.4°).

The results for the seven parameter sine fit acsvshin Fig. 6 while the results for the
spectral sinc fit are presented in Fig. 7. Theg@rihms are not biased and so the shown
results correspond only to the standard deviatiblzge that the evolutions of the standard
deviations are quite similar for these algorith@emparing with the ellipse fit algorithm, the
evolution pattern is the same, but the standarcatiens are higher for the ellipse fit.

In Fig. 8, the relative standard deviation of tlséireated frequency error is shown for the
seven-parameter sine fit and for the spectral sir{c.e., for the algorithms that also estimate
the signal frequency). It can be seen that thelteesiiboth algorithms are in the same order
of magnitude but with considerable shape differengdéis is caused by the fact that the sinc
fit uses the information from the signal to noisgias it estimates in order to weigh the
information from the two signals giving more relaga to the signal with the highest SNR.
This means that if one signal has a high SNR it agbure a very good frequency estimate
without being influenced by the samples of the aignth the lower SNR. On the other hand,
in the seven-parameter sine fit the residuals ¢ Isggnals are not weighted and contribute
equally to the estimates. In this case, if onedidras a high SNR and the other has a low
SNR (and both have similar order of magnitude atugéis as is the case in Fig. 8), the seven-
parameter sine fit will assign equal weights to slgnals and the signal with the lowest SNR
will infect the frequency estimation causing a l@gktandard deviation.

Fig. 6. Standard deviation of the amplitude rafip §nd phase difference error (B) for the severapeter
sine fit algorithm as a function of the two sigt@hoise ratios fob,=1 V andD,=0.25 V.

Fig. 7. Standard deviation of the amplitude rafip §énd phase difference error (B) for the speditat fit
algorithm as a function of the two signal to naiagos forD;=1 V andD,=0.25 V.
























