Nauki Ścisłe i Nauki o Ziemi

Polish Polar Research


Polish Polar Research | 2019 | vol. 40 | No 3 |


This article comprises an analysis of the variability of meteorological conditions on Kaffiøyra (NW Spitsbergen, Svalbard) in 2013–2017 in connection with atmospheric circulation and the extent of sea ice. The obtained results were compared with the results of observations made at the Ny-Ålesund station. Due to the situation of the area in the polar region and the large amount of clouds, especially in summer, the annual sum of incoming solar radiation was small, amounting to an average of 2,237.8 MJ.m-2 per year. The mean air temperature in the considered period was -2.0°C. Its extreme values ranged from 15.2°C to -23.8°C. In the annual course, the highest mean temperature occurred in July (6.5°C), and the lowest in March (-7.8°C). The mean relative humidity of air was high (83%). The prevailing wind directions were from south and north sectors and this coincided with the orientation of Forlandsundet. The mean wind speed was 3.6 m.s-1. In the summer season in 1975–2017, a statistically significant air temperature increase was observed, reaching 0.28°C/10 years. The high variability of local weather conditions was caused mainly by atmospheric circulation and the impact of sea ice was much smaller in comparison.

Przejdź do artykułu

Autorzy i Afiliacje

Marek Kejna
Ireneusz Sobota


In this paper, the recent ice regime variations in the Kara Sea have been described and quantified based on the high-resolution remote sensing database from 2003 to 2017. In general, the Kara Sea is fully covered with thicker sea ice in winter, but sea ice cover is continuously declining during the summer. The year 2003 was the year with the most severe ice conditions, while 2012 and 2016 were the least severe. The extensive sea ice begins to break up before May and becomes completely frozen at the end of December again. The duration of ice melting is approximately twice than that of the freezing. Since 2007, the minimum ice coverage has always been below 5%, resulting in wide open-waters in summer. Furthermore, the relevant local driving factors of external atmospheric forcing on ice conditions have been quantitatively calculated and analyzed. Winter accumulated surface air temperature has been playing a primary role on the ice concentration and thickness condition in winter and determining ice coverage index in the following melt-freeze stage. Correlation coefficients between winter accumulated temperature and ice thickness anomaly index, the ice coverage anomaly index, duration of melt-freeze stage can approach -0.72, -0.83 and 0.80, respectively. In summer, meridional winds contribute closely to summer ice coverage anomaly index, with correlation coefficient exceeding 0.80 since 2007 and 0.90 since 2010.

Przejdź do artykułu

Autorzy i Afiliacje

Chenglin Duan
Sheng Dong
Zhifeng Wang


Nothofagaceae fossil leaves and an associated palynoflora from Late Cretaceous sediments of Vega Island, eastern Antarctic Peninsula, are presented. The leaves are described as Nothofagus sp. 1 and Morphotype LDB 1, and come from the Snow Hill Island (late Campanian-early Maastrichtian) and the López de Bertodano (late Maastrichtian) formations, respectively. The palynoflora obtained from levels immediately above and below the Nothofagus sp. 1 and in the same horizon as the Morphotype LDB 1, included terrestrial and marine elements. In the palynoflora associated with Nothofagus sp. 1, conifers are dominant and pollen grains with Nothofagus affinity are represented by four species: Nothofagidites kaitangataensis (Te Punga) Romero 1973 and Nothofagidites senectus Dettmann and Playford 1968, which belong to the ancestral pollen type, as well as Nothofagidites dorotensis Romero 1973 and Nothofagidites sp. of the brassii-type. Cryptogamic spores, marine dinoflagellate cysts and algae, among others, are part of the assemblage. The palynoflora associated with the Morphotype LDB 1 also contains abundant conifer and angiosperm pollen grains with N. dorotensis as the only Nothofagus species recorded. Marine dinoflagellate cysts are scarce while fungi and phytodebris are common elements. The joint presence of marine and non-marine palynomorphs supports a probable nearshore environment at time of deposition for both units. Pollen and spore evidence suggests a mixed conifer and angiosperm forest, with Podocarpaceae and Nothofagus as the main components, and ferns, lycopods, and mosses in the understory. This forest developed under temperate and moist conditions during the middle Campanian-Maastrichtian.

Przejdź do artykułu

Autorzy i Afiliacje

Edgardo Romero
Cecilia R. Amenábar
María C. Zamaloa
Andrea Concheyro


The phytotoxic effects of fluoride and its derivatives on the seeds and seedlings of the Colobanthus apetalus and Colobanthus quitensis were studied. This is a first study to evaluate the influence of sodium fluoride (NaF) on the morphophysiological and biochemical processes on two Colobanthus species. The influence of various concentrations of NaF (9 mM, 19 mM, 29 mM) on the germination capacity and germination rate of seeds, seedlings growth and the proline content of plant tissues was analyzed under laboratory conditions (20/10°C, 12/12 h). The seeds of C. apetalus were collected from a greenhouse, whereas the seeds of C. quitensis were collected in Antarctica and in a greenhouse (Olsztyn, Poland). The tested concentrations of NaF did not suppress the germination of C. apetalus seeds, but the germination of C. quitensis seeds was inhibited. Sodium fluoride mainly inhibited root growth of C. apetalus and C. quitensis. In both analyzed species, the free proline content of seedlings increased significantly under exposure to NaF. The results of this study clearly indicate that C. apetalus and C. quitensis are highly resistant to NaF stress.

Przejdź do artykułu

Autorzy i Afiliacje

Justyna Dulska
Janusz Wasilewski
Piotr Androsiuk
Wioleta Kellmann-Sopyła
Katarzyna Głowacka
Ryszard Górecki
Katarzyna Chwedorzewska
Irena Giełwanowska


Microbes living in the polar regions have some common and unique strategies to respond to thermal stress. Nevertheless, the amount of information available, especially at the molecular level is lacking for some organisms such as Antarctic psychrophilic yeast. For instance, it is not known whether molecular chaperones in Antarctic yeasts play similar roles to those from mesophilic yeasts when they are exposed to heat stress. Therefore, this project aimed to determine the gene expression patterns and roles of molecular chaperones in Antarctic psychrophilic Glaciozyma antarctica PI12 that was exposed to heat stress. G. antarctica PI12 was grown at its optimal growth temperature of 12ºC and later exposed to heat stresses at 16ºC and 20ºC for 6 hours. Transcriptomes of those cells were extracted, sequenced and analyzed. Thirty-three molecular chaperone genes demonstrated differential expression of which 23 were up-regulated while 10 were down-regulated. Functions of up-regulated molecular chaperone genes were related to protein binding, response to a stimulus, chaperone binding, cellular response to stress, oxidation, and reduction, ATP binding, DNA-damage response and regulation for cellular protein metabolic process. On the other hand, functions of down-regulated molecular chaperone genes were related to chaperone-mediated protein complex assembly, transcription, cellular macromolecule metabolic process, regulation of cell growth and ribosome biogenesis. The findings provided information on how molecular chaperones work together in a complex network to protect the cells under heat stress. It also highlights the evolutionary conserved protective role of molecular chaperones in psychrophilic yeast, G. antarctica, and mesophilic yeast, Saccharomyces cerevisiae.

Przejdź do artykułu

Autorzy i Afiliacje

Nur Athirah Yusof
Clemente Michael Vui Ling Wong
Abdul Munir Abdul Murad
Farah Diba Abu Bakar
Nor Muhammad Mahadi
Ahmad Yamin Abdul Rahman
Nursyafiqi Zainuddin
Mohd Nazalan Mohd Najimudin



Magdalena BŁAŻEWICZ (Life Sciences), University of Łódź, Poland

Wojciech MAJEWSKI (Geosciences), Institute of Paleobiology PAS, Poland

Associate Editors

Krzysztof HRYNIEWICZ (Warszawa),


Piotr JADWISZCZAK (Białystok),


Krzysztof JAŻDŻEWSKI (Łódź),


Monika KĘDRA (Sopot)


Ewa ŁUPIKASZA (Sosnowiec)


Piotr PABIS (Łódź),


Editorial Advisory Board

Angelika BRANDT (Hamburg),

Claude DE BROYER (Bruxelles),

Peter CONVEY (Cambridge, UK),

J. Alistair CRAME (Cambridge, UK),

Rodney M. FELDMANN (Kent, OH),

Jane E. FRANCIS (Cambridge, UK),

Andrzej GAŹDZICKI (Warszawa)

Aleksander GUTERCH (Warszawa),

Jacek JANIA (Sosnowiec),

Jiří KOMÁREK (Třeboň),

Wiesława KRAWCZYK (Sosnowiec),

German L. LEITCHENKOV (Sankt Petersburg),

Jerónimo LÓPEZ-MARTINEZ (Madrid),

Sergio A. MARENSSI (Buenos Aires),

Jerzy NAWROCKI (Warszawa),

Ryszard OCHYRA (Kraków),

Maria OLECH (Kraków)

Sandra PASSCHIER (Montclair, NJ),

Jan PAWŁOWSKI (Genève),

Gerhard SCHMIEDL (Hamburg),

Jacek SICIŃSKI (Łódź),

Michael STODDART (Hobart),

Witold SZCZUCIŃSKI (Poznań),

Andrzej TATUR (Warszawa),

Wim VADER (Tromsø),

Tony R. WALKER (Halifax, Nova Scotia),

Jan Marcin WĘSŁAWSKI (Sopot) - President.



phone: (48 22) 697 88 53

Instytut Paleobiologii
Polska Akademia Nauk
ul. Twarda 51/55
00-818 Warszawa, POLAND

Life Sciences
phone: (48 22) 635 42 97

Zakład Biologii Polarnej i Oceanobiologii Uniwersytet Łódzki
ul. S. Banacha 12/16
90-237 Łódź, POLAND

Instrukcje dla autorów

Instructions for authors

The quarterly Polish Polar Research invites original scientific papers, dealing with all aspects of polar research. The journal aims to provide a forum for publication of high quality research papers, which are of international interest.

Articles must be written in English. Authors are requested to have their manuscript read by a person fluent in English before submission. They should be not longer than 30 typescript pages, including tables, figures and references. All papers are peer-reviewed. With the submitted manuscript authors should provide the names, addresses and e-mail addresses of three suggested reviewers.

Submission of an article implies that the work described has not been published previously nor is under consideration by another journal.

No honorarium will be paid. The journal does not have article processing charges (APCs) nor article submission charges.

The contribution should be submitted as Word file. It should be prepared in single- column double-spaced format and 25 mm margins. Consult a recent issue of the journal for layout and conventions ( Prepare figures and tables as separate files. For computer-generated graphics, editor Corel Draw is preferred. Line art images should be scanned and saved as bitmap (black and white) images at a resolution of 600–1200 dpi and tightly cropped. Computer versions of the photographs should be saved in TIFF format of at least 400 dpi (non-interpolated). Maximal publication size of illustrations is 126 × 196 mm. Limited number of color reproductions in print is fee of charge. Color artwork in PDF is free of charge.

Title should be concise and informative, no longer than 15 words. Abstract should have no more than 250 words. The authors are requested to supply up to 5 keywords. The references should be arranged alphabetically and chronologically. Journal names should not be abbreviated. Please, ensure that every reference cited in the text is also present in the reference list and vice versa. Responsibility for the accuracy of bibliographic citations lies entirely with the authors. References in the text to papers should consist of the surname of the author(s) followed by the year of publication. More than two authors should be cited with the first author’s surname, followed by et al. (Dingle et al. 1998) but in full in the References.


ANDERSON J.B. 1999. Antarctic Marine Geology. Cambridge University Press, Cambridge: 289 pp.
BIRKENMAJER K. 1991. Tertiary glaciation in the South Shetland Islands, West Antarctica: evaluation of data. In: M.R.A. Thomson, J.A. Crame and J.W. Thomson (eds) Geological Evolution of Antarctica. Cambridge University Press, Cambridge: 629–632.
DINGLE S.A., MARENSSI S.A. and LAVELLE M. 1998. High latitude Eocene climate deterioration: evidence from the northern Antarctic Peninsula. Journal of South American Earth Sciences 11: 571–579.
SEDOV R.V. 1997. Glaciers of the Chukotka. Materialy Glyatsiologicheskikh Issledovaniy 82: 213–217 (in Russian).
SOBOTA I. and GRZEŚ M. 2006. Characteristic of snow cover on Kaffi oyra’s glaciers, NW Spitsbergen in 2005. Problemy Klimatologii Polarnej 16: 147–159 (in Polish).

The journal does not have article processing charges (APCs) nor article submission charges.

Twenty-five reprints of each article published are supplied free of charge. Additional charged reprints can be ordered.


Please submit your manuscripts to Polish Polar Research via email to Editors-in-Chief:

Magdalena BŁAŻEWICZ (Life Sciences)

Wojciech MAJEWSKI (Geosciences)


Abstracting & Indexing

Polish Pola r Research is covered by the following services:

    AGRICOLA (National Agricultural Library)



    Baidu Scholar

    Cabell's Directory

    CABI (over 50 subsections)


    CNKI Scholar (China National Knowledge Infrastructure)


    Cold Regions Bibliography

    Current Antarctic Literature

    DOAJ (Directory of Open Access Journals)

    EBSCO (relevant databases)

    EBSCO Discovery Service

    Elsevier - Geobase

    Elsevier - Reaxys

    Elsevier - SCOPUS

    Genamics JournalSeek

    Google Scholar



    Naviga (Softweco)

    Polish Scientific Journals Contents

    Primo Central (ExLibris)

    ProQuest (relevant databases)



    SCImago (SJR)

    Summon (Serials Solutions/ProQuest)

    TDOne (TDNet)

    Thomson Reuters - Biological Abstracts

    Thomson Reuters - BIOSIS Previews

    Thomson Reuters - Journal Citation Reports/Science Edition

    Thomson Reuters - Science Citation Index Expanded

    Thomson Reuters - Zoological Record

    Ulrich's Periodicals Directory/ulrichsweb

    WorldCat (OCLC)


Technical Editors

Dom Wydawniczy ELIPSA, ul. Inflancka 15/198, 00-189 Warszawa, tel./fax 22 635 03 01, 22 635 17 85







phone: (48 22) 697 88 53

Instytut Paleobiologii

Polska Akademia Nauk

ul. Twarda 51/55

00-818 Warszawa, POLAND


Life Sciences



phone: (48 22) 635 42 97

Zakład Biologii Polarnej i Oceanobiologii Uniwersytet Łódzki

ul. S. Banacha 12/16

90-237 Łódź, POLAND

Polityka Open Access

Polish Polar Research jest czasopismem wydawanym w wolnym dostępie na licencji CC BY-NC-ND 3.0.

Polish Polar Research is an open access journal with all content available with no charge in full text version. The journal content is available under the licencse CC BY-NC-ND 3.0

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji