Science and earth science

Polish Polar Research

Content

Polish Polar Research | 1991 | vol. 12 | No 2 |

Abstract

Quaternary sediments in the southwestern Nordenskiöld Land are described with particular emphasis put on distribution of erratics against their basset matrices. Results confirm previous suppositions on directions of past glacial advances from east westwards. The latter separated by sea submergences, caused translocations of the rock material. This process was most intensive in upstreams of large mountain valleys.

Go to article

Abstract

We propose contents of topographic maps for polar areas to be supplemented with such landforms that are easily identified during the analysis of air or terrestial photographs. Such landforms include rock outliers (monadnocks), glacial boundaries, a beach and thick mantles of tundra vegetation. All these landforms create together with fluvial and lake patterns a system of elements that enable location of users and therefore make preparation of other (e.g. geological, geomorphological or glaciological) maps possible.

Go to article

Abstract

Basing of fieldworks geomorphologic and geologic setting of 14 raised marine beaches in northern Hornsund Region was presented. Their age is approximated by radiocarbon and thermoluminescence datings of sediments. The latter indicated that the four highest but mostly questionable marine beaches (220—230,200—205,180—190 and 100—120 m a.s.l.) should be referred to the Wedel Jarlsberg Land (Saalian) Glaciation. The four lower beaches (80—95, 70—75, 50—60 and 40—46 m a.s.1.) are connected with the Bogstranda (Eemian) Interglacial and the pre-maximum part of the Sorkapp Land (Vistulian) Glaciation. The post-maximum part of this glaciation, including Lisbetdalen Stage (50—40 ka) and Slaklidalen Stage (30—20 ka), was the time when the three still lower marine beaches (32—35, 22—25,16—18 m a.s.l.) were formed. Three lowermost marine beaches (8—12,4.5—6,2 m a.s.l.) are of the Holocene age.

Go to article

Abstract

Metal contents in the tundra soils (Gelic Regosols, Gelic Gleysols, Gelic Cambisols) of the maritime lowland of Kaffiöyra, in the western Spitsbergen seashore are presented in this publication. The average heave metal contents in samples collected from the depth layer 0—130 cm are follows: Fe 2.9%, Mn 392 ppm, Zn 75 ppm, Cu 23.4 ppm, Ni 24.1 ppm, Co 7.4 ppm, Pb 12.5 ppm, Cd 0.24 ppm. The surface soil layer 0 to 25 cm is poorer in Ca and Mg than the underlying layer 25 to 130 cm. The heave metal contents like Fe, Mn, Ni and Co, are also somewhat lower in the upper layer. The enrichment indices of Pb and Cd are equal in the surface soil layer 1.16 and 1.23 respectively. Correlation coefficients between each studied element and organic carbon, and, on the other hand, soil separates < 20 μm and < 2 μm are very low.

Go to article

Abstract

Distribution of the following elements: Na, K, Ca and Mg, and heavy metals: Fe, Mn, Zn, Cu, Ni, Co, Pb and Cd was analysed in the Gelic Cambisols profile from Kaffiöyra, Spitsbergen. The leaching of Ca, Fe, Mn, Co and Cu, and in a less degree Mg and Ni downward the profiles occurs in the studied soil due to pedogenic processes. The surface soil horizon is strongly enriched in Na and K of marine origin and Pb and Cd from anthropogenic pollution of the distant atmospheric transports.

Go to article

Abstract

During summer seasons of 1982 and 198S the authors collected observations on rate of soil thawing under and around shallow tundra lakes. Two lakes were studied: A on the terrace 10 m a.s.1. in northern Kafliöyra whereas B at about 40 m a.sJ. in southern margin of Sarsdyra. The lakes indicated considerable variation of water lavels (10—20 m) caused by limited water bodies (to 40—80%) at the end of the observation period. Soil thawing was studied in sections across lake basins and to 20 m around them. A thawing rate was found greater under the lakes than in their surroundings and it was noted to be in the same time the quicker the larger was the lake. Studies of the lake B proved also that increase in the reservoir depth made a greater rate and depth of summer thawing. This process varied also considerably in time. At the beginning of a polar summer the dry soil of elevated tundra thaws sooner while permafrost under water reservoirs gets conserved. Later on (in August) a quick aggradation of active layer in noted under the lake. A heat accumulated in water bodies prolongs the soil thawing as well.

Go to article

Abstract

Heavy minerals in sandur deposits from the forefield of the Renard Glacier were investigated. They are concentrated only in fractions below 0.1 mm in diameter. Composition and preservation of heavy minerals indicate very high dynamic in the sedimentary environment. Most resistant minerals as zircon and tourmaline predominate and are strongly crumbled. They probably may serve as mineral indicators of sandur deposits. If distinguished regularities are confirmed in forefield in other Spitsbergen sandurs, then contemporary and Pleistocene sandur deposits could be compared. No mineralogie differentiation of intra- and extramorainal sandurs was noted.

Go to article

Abstract

Mean annual variation of snow depth at the Hornsund Station has been determined. The snow cover usually appears in late September and remains till the beginning of July the next year. The snow depth keeps growing till the first half of March and from then on, until the third dekad of May it does not change. Towards the end of May fast decrease of snow cover occurs mainly due to subsidence by intensive insolation. If compared to the Arctic Basin the snow cover appears in Hornsund three dekads later and disappears about two dekads sooner.

Go to article

Abstract

Thin coal seams found in the Lions Cove Formation, Polonia Glacier Group (Middle Eocene, upper part) at King George Bay, King George Island (South Shetland Islands, West Antarctica), represent lustrous (vitrine) brown-coal metaphase. The coal from the lower seam represents carbonized wood, probably angiosperm, that from the upper ones originated due to accumulation of branches or larger wood fragments and leaf remains. These coals are slightly older than metaxylite brown coal previously described from Admiralty Bay on King George Island, and dated at Eocene-Oligocene boundary. Both coal occurrences are evidences for a warm climate which prevailed in the Antarctic Peninsula sector during the Arctowski Interglacial (ca 50—32 Ma).

Go to article

Abstract

The species of the brachiopod genus Terebratella d'Orbigny, which does not correspond to any one reported hitherto from the upper Eocene-? lower Oligocene La Meseta Formation of Seymour Island, West Antarctica but showing a strong affinity to the Recent T. inconspicua (Sowerby), is described.

Go to article

Editorial office

Editors-in-Chief

Magdalena BŁAŻEWICZ (Life Sciences), University of Łódź, Poland
e-mail: magdalena.blazewicz@biol.uni.lodz.pl
Wojciech MAJEWSKI (Geosciences), Institute of Paleobiology PAS, Poland
e-mail: wmaj@twarda.pan.pl

Associate Editors
Krzysztof HRYNIEWICZ (Warszawa),
e-mail:krzyszth@twarda.pan.pl
Piotr JADWISZCZAK (Białystok),
e-mail: piotrj@uwb.edu.pl
Piotr Pabis (Łódź),
e-mail: cataclysta@wp.pl
Krzysztof Jażdżewski (Łódź),
e-mail: krzysztof.jazdzewski@biol.uni.lodz.pl

Editorial Advisory Board


Krzysztof BIRKENMAJER (Kraków),

Angelika BRANDT (Hamburg),

Claude DE BROYER (Bruxelles),

Peter CONVEY (Cambridge, UK),

J. Alistair CRAME (Cambridge, UK),

Rodney M. FELDMANN (Kent, OH),

Jane E. FRANCIS (Cambridge, UK),

Andrzej GAŹDZICKI (Warszawa)

Marek GRAD (Warszawa),

Aleksander GUTERCH (Warszawa),

Jacek JANIA (Sosnowiec),

Jiří KOMÁREK (Třeboň),

Wiesława KRAWCZYK (Sosnowiec),

German L. LEITCHENKOV (Sankt Petersburg),

Jerónimo LÓPEZ-MARTINEZ (Madrid),

Sergio A. MARENSSI (Buenos Aires),

Jerzy NAWROCKI (Warszawa),

Ryszard OCHYRA (Kraków),

Maria OLECH (Kraków) - President,

Sandra PASSCHIER (Montclair, NJ),

Jan PAWŁOWSKI (Genève),

Gerhard SCHMIEDL (Hamburg),

Jacek SICIŃSKI (Łódź),

Michael STODDART (Hobart),

Witold SZCZUCIŃSKI (Poznań),

Andrzej TATUR (Warszawa),

Wim VADER (Tromsø),

Tony R. WALKER (Halifax, Nova Scotia),

Jan Marcin WĘSŁAWSKI (Sopot)

Technical Editors
Dom Wydawniczy ELIPSA, ul. Inflancka 15/198, 00-189 Warszawa, tel./fax 22 635 03 01, 22 635 17 85

 

Contact

Geosciences
Wojciech MAJEWSKI
e-mail: wmaj@twarda.pan.pl
phone: (48 22) 697 88 53

Instytut Paleobiologii
Polska Akademia Nauk
ul. Twarda 51/55
00-818 Warszawa, POLAND

Life Sciences
Magdalena BŁAŻEWICZ
e-mail: magdalena.blazewicz@biol.uni.lodz.pl
phone: (48 22) 635 42 97

Zakład Biologii Polarnej i Oceanobiologii Uniwersytet Łódzki
ul. S. Banacha 12/16
90-237 Łódź, POLAND

Instructions for authors

Instructions for authors

The quarterly Polish Polar Research invites original scientific papers, dealing with all aspects of polar research. The journal aims to provide a forum for publication of high quality research papers, which are of international interest.

Articles must be written in English. Authors are requested to have their manuscript read by a person fluent in English before submission. They should be not longer than 30 typescript pages, including tables, figures and references. All papers are peer-reviewed. With the submitted manuscript authors should provide the names, addresses and e-mail addresses of three suggested reviewers.

Submission of an article implies that the work described has not been published previously nor is under consideration by another journal.

The contribution should be submitted as Word file. It should be prepared in single- column double-spaced format and 25 mm margins. Consult a recent issue of the journal for layout and conventions (journals.pan.pl/ppr). Prepare figures and tables as separate files. For computer-generated graphics, editor Corel Draw is preferred. Line art images should be scanned and saved as bitmap (black and white) images at a resolution of 600–1200 dpi and tightly cropped. Computer versions of the photographs should be saved in TIFF format of at least 400 dpi (non-interpolated). Maximal publication size of illustrations is 126 × 196 mm. Limited number of color reproductions in print is fee of charge. Color artwork in PDF is free of charge.

Title should be concise and informative, no longer than 15 words. Abstract should have no more than 250 words. The authors are requested to supply up to 5 keywords. The references should be arranged alphabetically and chronologically. Journal names should not be abbreviated. Please, ensure that every reference cited in the text is also present in the reference list and vice versa. Responsibility for the accuracy of bibliographic citations lies entirely with the authors. References in the text to papers should consist of the surname of the author(s) followed by the year of publication. More than two authors should be cited with the first author’s surname, followed by et al. (Dingle et al. 1998) but in full in the References.

 

Examples:
ANDERSON J.B. 1999. Antarctic Marine Geology. Cambridge University Press, Cambridge: 289 pp.
BIRKENMAJER K. 1991. Tertiary glaciation in the South Shetland Islands, West Antarctica: evaluation of data. In: M.R.A. Thomson, J.A. Crame and J.W. Thomson (eds) Geological Evolution of Antarctica. Cambridge University Press, Cambridge: 629–632.
DINGLE S.A., MARENSSI S.A. and LAVELLE M. 1998. High latitude Eocene climate deterioration: evidence from the northern Antarctic Peninsula. Journal of South American Earth Sciences 11: 571–579.
SEDOV R.V. 1997. Glaciers of the Chukotka. Materialy Glyatsiologicheskikh Issledovaniy 82: 213–217 (in Russian).
SOBOTA I. and GRZEŚ M. 2006. Characteristic of snow cover on Kaffi oyra’s glaciers, NW Spitsbergen in 2005. Problemy Klimatologii Polarnej 16: 147–159 (in Polish).

The journal does not have article processing charges (APCs) nor article submission charges.

Twenty-five reprints of each article published are supplied free of charge. Additional charged reprints can be ordered.

 

Please submit your manuscripts to Polish Polar Research via email to Editors-in-Chief:

Magdalena BŁAŻEWICZ (Life Sciences) magdalena.blazewicz@biol.uni.lodz.pl

Wojciech MAJEWSKI (Geosciences) wmaj@twarda.pan.pl

 

Abstracting & Indexing

Polish Pola r Research is covered by the following services:

    AGRICOLA (National Agricultural Library)

    AGRO

    Arianta

    Baidu Scholar

    Cabell's Directory

    CABI (over 50 subsections)

    Celdes

    CNKI Scholar (China National Knowledge Infrastructure)

    CNPIEC

    Cold Regions Bibliography

    Current Antarctic Literature

    DOAJ (Directory of Open Access Journals)

    EBSCO (relevant databases)

    EBSCO Discovery Service

    Elsevier - Geobase

    Elsevier - Reaxys

    Elsevier - SCOPUS

    Genamics JournalSeek

    Google Scholar

    J-Gate

    JournalTOCs

    Naviga (Softweco)

    Polish Scientific Journals Contents

    Primo Central (ExLibris)

    ProQuest (relevant databases)

    ReadCube

    ResearchGate

    SCImago (SJR)

    Summon (Serials Solutions/ProQuest)

    TDOne (TDNet)

    Thomson Reuters - Biological Abstracts

    Thomson Reuters - BIOSIS Previews

    Thomson Reuters - Journal Citation Reports/Science Edition

    Thomson Reuters - Science Citation Index Expanded

    Thomson Reuters - Zoological Record

    Ulrich's Periodicals Directory/ulrichsweb

    WorldCat (OCLC)

 

Technical Editors

Dom Wydawniczy ELIPSA, ul. Inflancka 15/198, 00-189 Warszawa, tel./fax 22 635 03 01, 22 635 17 85

 

Contact:

 

Geosciences

Wojciech MAJEWSKI

e-mail: wmaj@twarda.pan.pl

phone: (48 22) 697 88 53

Instytut Paleobiologii

Polska Akademia Nauk

ul. Twarda 51/55

00-818 Warszawa, POLAND

 

Life Sciences

Magdalena BŁAŻEWICZ

e-mail: magdalena.blazewicz@biol.uni.lodz.pl

phone: (48 22) 635 42 97

Zakład Biologii Polarnej i Oceanobiologii Uniwersytet Łódzki

ul. S. Banacha 12/16

90-237 Łódź, POLAND

This page uses 'cookies'. Learn more