Science and earth science

Polish Polar Research


Polish Polar Research | 2018 | vol. 39 | No 1 |

Download PDF Download RIS Download Bibtex


Rock glaciers are lobate or tongue-shaped landforms which consist of rock debris and have either an ice core or an ice-cemented matrix. Characteristics such as the landscape setting, morphology, material and current geomorphological state are universally used to classify rock glaciers. In Antarctica, rock glaciers have only been surveyed on the Antarctic Peninsula, Ellsworth Mountains and in Victoria Land. This paper presents the first data on the identification and description of rock glaciers in the Jutulsessen nunataks, Dronning Maud Land, East Antarctica. The rock glaciers in the Jutulsessen exhibit a variety of morphologies and states. Our data suggests that the rock glaciers in Brugdedalen and Jutuldalen are active, while the features at Vassdalen and Grjotlia are considered inactive, and a feature at Grjotøyra is considered relict. The described rock glaciers do not fit into existing classification systems and appear to be different to alpine, Arctic and Andean rock glaciers. They further present examples that fit both the ‘glaciogenic’ and ‘permafrost’ development theories.
Go to article

Authors and Affiliations

Elizabeth M. Rudolph
K. Ian Meiklejohn
Christel D. Hansen
David W. Hedding
Werner Nel
Download PDF Download RIS Download Bibtex


Antarctica is perceived as one of the most pristine environments on Earth, though increasing human activities and global climate change raise concerns about preserving the continent’s environmental quality. Limited in distribution, soils are particularly vulnerable to disturbances and pollution, yet lack of baseline studies limits our abilities to recognize and monitor adverse effects of environmental change. To improve the understanding of natural geochemical variability of soils, a survey was conducted in the fellfield environments of Edmonson Point (Victoria Land). Soil samples were analyzed for six major (Fe, Ca, Mg, Na, K and Ti) and 24 trace elements (As, Ba, Be, Bi, Cd, Co, Cr, Cs, Cu, Ga, Li, Mn, Mo, Ni, Pb, Rb, Sn, Sr, Tl, U, V, Y, Zn and Zr). Relationships among element concentrations in the samples and local bedrock were analyzed to identify their origin and similarities in geochemical cycles. Element concentrations in the soils were highly variable but generally within the lowest values reported elsewhere in Antarctica. Though values of Cd, Mn, Ni and Zn were relatively high, they are consistent with those in the local soil-forming rocks indicating an origin from natural sources rather than anthropogenic contamination. Chemical composition of soils vs. rocks pointed to alkali basalts as the lithogenic source of the soil matrix, but also indicated considerable alteration of elemental composition in the soil. Considering local environmental settings, the soil elemental content was likely affected by marine-derived inputs and very active hydrological processes which enhanced leaching and removal of mobilized elements. Both of these processes may be of particular importance within the context of global climate change as the predicted increases in temperature, water availability and length of the summer season would favor mineral weathering and increase geochemical mobility of elements.
Go to article

Authors and Affiliations

Steven D. Emslie
Jerzy Smykla
Ewa Szarek-Gwiazda
Marek Drewnik
Wiesław Knap
Download PDF Download RIS Download Bibtex


A total number of 156 palaeomagnetic specimens of metacarbonates from 9 sites in Blomstrandhalvøya and Lovénøyane (Kongsfjorden, western Spitsbergen) and an additional 77 specimens of unmetamorphosed sediments infilling fractures (4 sites) within the Caledonian metamorphic basement of Blomstrandhalvøya were demagnetized. No relicts of pre-metamorphic magnetization were identified. The Natural Remanent Magnetization (NRM) pattern of metacarbonates is dominated by Caledonian (sensu lato) – Svalbardian and Late Mesozoic/Cenozoic secondary magnetic overprints carried by the pyrrhotite and magnetite/maghemite phases, respectively. The NRM of unmetamorphosed sediments infilling the karstic/tectonic fractures is dominated by hematite carrier. It revealed three stages of magnetization: Caledonian sensu lato, Carboniferous and Late Mesozoic/Cenozoic, which can be related to their initial fracturing, karstification and sedimentation or reactivation. As the majority of the palaeopoles calculated for the Kongsfjorden sites fit the 430 – 0 Ma sector of Laurussia reference path in an in situ orientation these results support the hypothesis that Blomstrandhalvøya and Lovénøyane escaped main Eurekan deformations. The potential rotation of the Kongsfjorden basement by any west dipping listric fault activity rotating the succession accompanying the opening of North Atlantic Ocean was not documented by the palaeomagnetic data presented here.
Go to article

Authors and Affiliations

Krzysztof Michalski
Download PDF Download RIS Download Bibtex


This paper reports on a morphometric analysis of land-terminating glaciers on southern and western Spitsbergen in the years 1936–2014. An attempt was made to estimate the deglaciation rate and the scale of its acceleration in the 21st century in the conditions of Arctic amplification. Satellite scenes and topographic map sheets were used for the study and were analyzed by means of remote sensing and GIS methods. The study covered 2000–2014 years and concluded that surface recession accelerated on average by a factor of 2.75 compared to the 1936–2000 period, while linear recession was 2.2 times faster. The greatest increase in the deglaciation rate can be observed in the case of glaciers faced to N and W sectors. The deglaciation process is the most advanced in the central part of the island, where small, compact mountain glaciers predominate. In recent years, a slowdown in the deglaciation processes in these glaciers was observed. The studies demonstrate that the deglaciation rate was mainly influenced by the basin relief determining the glacier geometry. The resultant fractal nature of the ice cover makes it highly vulnerable to the disintegration of complex glacial systems into smaller ones due to glacier thinning and the separation of outlets. The acceleration of the deglaciation rate in turn is modified by the climate factor, especially the impact of warming air masses from the N and W sectors where seas are becoming increasingly ice-free and, consequently, have an increasing heat capacity.
Go to article

Authors and Affiliations

Joanna Ewa Szafraniec
Download PDF Download RIS Download Bibtex


Geomorphological research based on geomorphological mapping seeks to identify the origins and age of forms as well as to describe the process that created or transformed a particular form. One of the most important aspects of this study is the morphometry and morphology of the landscape. This also applies to the submarine areas, and issues related to marine geomorphometry. Bathymetric data used in this study were obtained from the measurements of the Norwegian Hydrographic Service and measurements conducted by the authors. Its main goal was: to determine the bathymetry of the Recherchefjorden (Bellsund, Svalbard), establish morphometric parameters for the analysis of the morphology of the bottom. The boundaries of zones, related to the specific character of bottom geomorphology linked with geological structure, tectonics and, in particular, the impact of glacial system, was delineated. The sets of landforms (areas) were distinguished based on the morphometric analysis resulting from the determined parameters: slopes, its aspects, curvatures and Bathymetric Position Index. Basically, this areas are concentrated in two zones: the main Recherchefjorden and its surroundings. The delimitation also takes into account the origins and location of theme in relation to the glacial systems. On this basis, moraine areas were distinguished. They are linked with the Holocene advances of two glaciers, Renardbeen and Recherchebreen, mainly during the Little Ice Age. They constitute boundary zones between areas with different morphometric parameters: outer fjord and inner fjord. Moreover, taking into account geology and terrestrial geomorphology it was possible to describe paraglacial processes in this area.
Go to article

Authors and Affiliations

Mateusz Moskalik
Piotr Zagórski
Leszek Łęczyński
Joanna Ćwiąkała
Piotr Demczuk
Download PDF Download RIS Download Bibtex


In this study, atlases of wave characteristics and wave energy for the Barents Sea have been generated for the years from 1996 to 2015 based on ERA-Interim datasets from the European Centre for Medium-Range Weather Forecasts (ECMWF). The wave power resources in the Barents Sea can be exploited with sea ice extent declining in recent years. The entire Barents Sea has been divided into multi-year sea ice zones, seasonal sea ice zones and open water zones according to the 20-year averaged sea ice concentration. In the entire domain, the spatial distributions of the annual averaged and mean monthly significant wave heights and wave energy flux are presented. For the open water zones, 15 points have been selected at different locations so as to derive and study the wave energy roses and the inter-annual wave power variation. Moreover, the correlations between the wave energy period and the significant wave height are shown in the energy and scatter diagrams. The maximum wave power occurs in the winter in the western parts of the Barents Sea with more than 60kW/m. The wave energy can therefore be exploited in the open water zones.
Go to article

Authors and Affiliations

Agnieszka Sulikowska
Wiesław Ziaja
Agnieszka Wypych
Krzysztof Mitka
Wojciech Maciejowski
Krzysztof Ostafin

Editorial office


Magdalena BŁAŻEWICZ (Life Sciences), University of Łódź, Poland

Wojciech MAJEWSKI (Geosciences), Institute of Paleobiology PAS, Poland

Michał ŁUSZCZUK (Social Science and Hummanities), UMCS, Poland

Associate Editors

Piotr JADWISZCZAK (Białystok),


Krzysztof JAŻDŻEWSKI (Łódź),


Monika KĘDRA (Sopot)


Ewa ŁUPIKASZA (Sosnowiec)


Piotr PABIS (Łódź),


Editorial Advisory Board

Angelika BRANDT (Hamburg),

Claude DE BROYER (Bruxelles),

Peter CONVEY (Cambridge, UK),

J. Alistair CRAME (Cambridge, UK),

Rodney M. FELDMANN (Kent, OH),

Jane E. FRANCIS (Cambridge, UK),

Andrzej GAŹDZICKI (Warszawa)

Aleksander GUTERCH (Warszawa),

Jacek JANIA (Sosnowiec),

Jiří KOMÁREK (Třeboň),

Wiesława KRAWCZYK (Sosnowiec),

German L. LEITCHENKOV (Sankt Petersburg),

Jerónimo LÓPEZ-MARTINEZ (Madrid),

Sergio A. MARENSSI (Buenos Aires),

Jerzy NAWROCKI (Warszawa),

Ryszard OCHYRA (Kraków),

Maria OLECH (Kraków)

Sandra PASSCHIER (Montclair, NJ),

Jan PAWŁOWSKI (Genève),

Gerhard SCHMIEDL (Hamburg),

Jacek SICIŃSKI (Łódź),

Michael STODDART (Hobart),

Witold SZCZUCIŃSKI (Poznań),

Andrzej TATUR (Warszawa),

Wim VADER (Tromsø),

Tony R. WALKER (Halifax, Nova Scotia),

Jan Marcin WĘSŁAWSKI (Sopot) - President.



phone: (48 22) 697 88 53

Instytut Paleobiologii PAN
ul. Twarda 51/55
00-818 Warszawa, POLAND

Life Sciences
phone: (48 22) 635 42 97

Zakład Biologii Polarnej i Oceanobiologii Uniwersytet Łódzki
ul. S. Banacha 12/16
90-237 Łódź, POLAND

Social Science and Hummanities
phone: (48 81) 537 68 99

Instytut Geografii Społeczno-Ekonomicznej i Gospodarki Przestrzennej UMCS
Al. Kraśnicka 2D
20-718 Lublin, POLAND

Instructions for authors

Instructions for authors

The quarterly Polish Polar Research invites original scientific papers dealing with all aspects of polar research. The journal aims to provide a forum for publication of high-quality research papers, which are of international interest.

Articles must be written in English. Authors are requested to have their manuscript read by a person fluent in English before submission. They should not be longer than 30 typescript pages, including tables, figures and references. However, upon request, longer manuscripts may be considered for publication. All papers are peer-reviewed. With a submitted manuscript, authors should provide their names, affiliations, ORCID number and e-mail addresses of at least three suggested reviewers.

Submission of the manuscript should be supported with a declaration that the work described has not been published previously nor is under consideration by another journal.

For text submission, Word file format is preferred. The text should be prepared in single-column double-spaced format and 25 mm margins. Consult the current issue of the journal for layout and conventions. Figures and tables should be prepared as separate files. Line art images should be scanned and saved as bitmap (black and white) images at a resolution of 600–1200 dpi and tightly cropped. Computer versions of the photographs should be saved in TIFF format of at least 400 dpi (non-interpolated). Maximal publication size of illustrations is 126×196 mm. Authors must make sure that graphics are clearly readable at this size. ‘Hairline’ line width must not be used. All chart axes need to be labeled in full. For labeling sub-graphics in a single figure, capital letters placed in the upper left corner are preferred. Bold letters should not be used in tables (including headers), except to highlight a significant value/information.

A limited number of color reproductions in print is free of charge. Color artwork in PDF is free of charge.

Title should be concise, informative and no longer than 15 words. Abstract should have no more than 250 words. The authors are requested to supply up to 5 keywords, different than words used in the title. The references should be arranged alphabetically and chronologically. Journal names should not be abbreviated. Please, ensure that every reference cited in the text is also present in the reference list and vice versa.
Responsibility for the accuracy of bibliographic citations lies entirely with the authors. The inline references to published papers should consist of the surname of the author(s) followed by the year of publication. More than two authors should be cited with the first author’s surname, followed by et al. (Dingle et al. 1998) but in full in the References.

ANDERSON J.B. 1999. Antarctic Marine Geology. Cambridge University Press, Cambridge.
BIRKENMAJER K. 1991. Tertiary glaciation in the South Shetland Islands, West Antarctica: evaluation of data. In: M.R.A. Thomson, J.A. Crame and J.W. Thomson (eds) Geological Evolution of Antarctica. Cambridge University Press, Cambridge: 629–632.
DINGLE S.A., MARENSSI S.A. and LAVELLE M. 1998. High latitude Eocene climate deterioration: evidence from the northern Antarctic Peninsula. Journal of South American Earth Sciences 11: 571–579.
SEDOV R.V. 1997. Glaciers of the Chukotka. Materialy Glyatsiologicheskikh Issledovaniy 82: 213–217 (in Russian).
SOBOTA I. and GRZEŚ M. 2006. Characteristic of snow cover on Kaffioyra’s glaciers, NW Spitsbergen in 2005. Problemy Klimatologii Polarnej 16: 147–159 (in Polish).
WARD B.L. 1984. Distribution of modern benthic foraminifera of McMurdo Sound, Antarctica. M.Sc. Thesis. Victoria University, Wellington (unpublished).

The journal does not have article processing charges (APCs) nor article submission charges. No honorarium will be paid to authors for publishing papers.
Please submit your manuscripts to Polish Polar Research using our online submission system.

Open Access policy

Polish Polar Research jest czasopismem wydawanym w wolnym dostępie na licencji CC BY-NC-ND 3.0.

Polish Polar Research is an open access journal with all content available with no charge in full text version. The journal content is available under the licencse CC BY-NC-ND 3.0

Additional information

Abstracting & Indexing

Polish Polar Research is covered by the following services:

  • AGRICOLA (National Agricultural Library)
  • AGRO
  • Arianta
  • Baidu Scholar
  • Cabell's Directory
  • CABI (over 50 subsections)
  • Celdes
  • CNKI Scholar (China National Knowledge Infrastructure)
  • Cold Regions Bibliography
  • Current Antarctic Literature
  • DOAJ (Directory of Open Access Journals)
  • EBSCO (relevant databases)
  • EBSCO Discovery Service
  • Elsevier - Geobase
  • Elsevier - Reaxys
  • Elsevier - SCOPUS
  • Genamics JournalSeek
  • Google Scholar
  • J-Gate
  • JournalTOCs
  • Naviga (Softweco)
  • Polish Scientific Journals Contents
  • Primo Central (ExLibris)
  • ProQuest (relevant databases)
  • ReadCube
  • ResearchGate
  • SCImago (SJR)
  • Summon (Serials Solutions/ProQuest)
  • TDOne (TDNet)
  • Thomson Reuters - Biological Abstracts
  • Thomson Reuters - BIOSIS Previews
  • Thomson Reuters - Journal Citation Reports/Science Edition
  • Thomson Reuters - Science Citation Index Expanded
  • Thomson Reuters - Zoological Record
  • Ulrich's Periodicals Directory/ulrichsweb
  • WorldCat (OCLC)

This page uses 'cookies'. Learn more