Nauki Techniczne

Metrology and Measurement Systems

Zawartość

Metrology and Measurement Systems | 2013 | No 4 |

Abstrakt

Direct sensor-to-microcontroller is a simple approach for direct interface of passive modulating sensors to a microcontroller without any active components in between the sensor and the microcontroller and without an analog to digital converter. The metrological performances of such interface circuits are limited by certain microcontroller parameters which are predetermined by the manufacturing technology. These limitations can be improved by specific hardware-related techniques and can improve the accuracy, speed and resolution of the measurements. Such hardware solutions as well as proper selection of the electrical components are addressed in this paper. It has been shown that employment of only a few MOSFET transistors can reduce the maximal relative error of single point calibration more than fifteen times and can increase the measuring speed around 30 % in all calibration techniques in the measurement range of PT1000 resistive temperature sensors. Moreover, the effective number of resolution bits increases by more than 1.3 bits when using an external comparator.

Przejdź do artykułu

Abstrakt

In situ monitoring of the thickness of thin diamond films during technological processes is important because it allows better control of deposition time and deeper understanding of deposition kinetics. One of the widely used techniques is laser reflectance interferometry (LRI) which enables non-contact measurement during CVD deposition. The authors have built a novel LRI system with a 405 nm laser diode which achieves better resolution compared to the systems based on He-Ne lasers, as reported so far. The system was used for in situ monitoring of thin, microcrystalline diamond films deposited on silicon substrate in PA-CVD processes. The thickness of each film was measured by stylus profilometry and spectral reflectance analysis as a reference. The system setup and interferometric signal processing are also presented for evaluating the system parameters, i.e. measurement uncertainty, resolution and the range of measurable film thickness.

Przejdź do artykułu

Abstrakt

The paper presents the results of the analysis of the striker shape impact on the shape of the mechanical elastic wave generated in the Hopkinson bar. The influence of the tensometer amplifier bandwidth on the stress-strain characteristics obtained in this method was analyzed too. For the purposes of analyzing under the computing environment ABAQUS / Explicit the test bench model was created, and then the analysis of the process of dynamic deformation of the specimen with specific mechanical parameters was carried out. Based on those tests, it was found that the geometry of the end of the striker has an effect on the form of the loading wave and the spectral width of the signal of that wave. Reduction of the striker end diameter reduces unwanted oscillations, however, adversely affects the time of strain rate stabilization. It was determined for the assumed test bench configuration that a tensometric measurement system with a bandwidth equal to 50 kHz is sufficient

Przejdź do artykułu

Abstrakt

In this paper the design and implementation of a plug-and-play analog resistance temperature sensor is presented. The smart temperature sensor consists of an analog sensor element with transducer electronic data sheet (TEDS) memory device and a network- capable application processor (NCAP) connected through a mixedmode interface (MMI). The mixed-mode interface and NCAP front-end electronic support have been implemented by the use of a standard 8-bit microcontroller. NCAP's application processing and network communication functions are implemented based on the concept of virtual instrumentation using a PC. The implemented NCAP can also be used as a plug-and-play stand-alone data acquisition system or as development system for plug-and-play sensors compliant with the IEEE 1451.4 standard. Details of sensor implementation and test results are included in the paper.

Przejdź do artykułu

Abstrakt

In this paper a measurement system for determination of supercapacitor equivalent parameters is proposed. Specific properties of materials used for supercapacitor construction require some advanced tools and measurement procedures to be applied during tests. The measurement system allows to measure values of equivalent parameters by both the DC and AC method whilst keeping appropriate time criteria required by this type of devices. Furthermore, in this paper the most relevant properties and measurement capabilities of the proposed system are described as well as some exemplary values of the supercapacitor equivalent parameters measured experimentally are presented.

Przejdź do artykułu

Abstrakt

Temperature change is one of key factors which should be taken into account in logistics during transportation or storage of many types of goods. In this study, a passive UHF RFID-enabled sensor system for elevated temperature (above 58°C) detection has been demonstrated. This system consists of an RFID reader and disposable temperature sensor comprising an UHF antenna, chip and temperature sensitive unit. The UHF antenna was designed and simulated in an IE3D software. The properties of the system were examined depending on the temperature level, type of package which contains the studied objects and the type of antenna substrate.

Przejdź do artykułu

Abstrakt

This paper presents a method of correcting the effects caused by refraction phenomena in an optical measurement system. The correction algorithm proposed can be applied in many different photogrammetric applications affected by these effects. To validate this algorithm, a foot sole optical measurement system that uses several cameras to build a mesh of a foot sole has been used. This measurement system has six cameras that are protected by a safety glass that separates the cameras from the foot to be measured. The safety glass produces an air-glass-air interface that causes the refraction phenomena, producing deformations in the images. Due to the deformations it is impossible to obtain reliable metric information of the images captured using the measurement system. The developed correction algorithm is based on a grid layout and associated polynomials and makes it possible to correct the deformations and extract accurate metric information.

Przejdź do artykułu

Abstrakt

In this paper a survey of analog application specific integrated circuits (ASICs) for low-level image processing, called vision chips, is presented. Due to the specific requirements, the vision chips are designed using different architectures best suited to their functions. The main types of the vision chip architectures and their properties are presented and characterized on selected examples of prototype integrated circuits (ICs) fabricated in complementary metal oxide semiconductor (CMOS) technologies. While discussing the vision chip realizations the importance of low-cost, low-power solutions is highlighted, which are increasingly being used in intelligent consumer equipment. Thanks to the great development of the automated design environments and fabrication methods, new, so far unknown applications of the vision chips become possible, as for example disposable endoscopy capsules for photographing the human gastrointestinal tract for the purposes of medical diagnosis.

Przejdź do artykułu

Abstrakt

The article proposes a method for measuring discomfort glare which uses numerical description of the phenomenon in the form of a digital luminance distribution map recorded on a CCD array. Essential procedures for determining partial quantities which are necessary for calculation of UGR index are discussed in detail, along with techniques for measuring position index and size of light sources, with regard to the parameters of the registering system and coordinates of the images of the sources on the array.

Przejdź do artykułu

Abstrakt

Noise spectroscopy and I-V characteristic non-linearity measurement were applied as diagnostic tools in order to characterize the volume and contact quality of positive temperature coefficient (PTC) chip sensors and to predict possible contact failure. Correctly made and stable contacts are crucial for proper sensing. I-V characteristics and time dependences of resistance were measured for studied sensors and, besides the samples with stable resistance value, spike type resistance fluctuation was observed for some samples. These spikes often disappear after about 24 hours of voltage application. Linear I-V characteristics were measured for the samples with stable resistance. The resistance fluctuation of burst noise type was observed for some samples showing the I-V characteristic dependent on the electric field orientation. We have found that the thermistors with high quality contacts had a linear I-V characteristic, the noise spectral density is of 1/f type and the third harmonic index is lower than 60 dB. The samples with poor quality contacts show non-linear I-V characteristics and excess noise is given by superposition of g-r and 1/fn type noises, and the third harmonic index is higher than 60 dB.

Przejdź do artykułu

Abstrakt

In this paper the method of fast impedance spectroscopy of technical objects with high impedance (|Zx| ≥1 GΩ) is evaluated by means of simulation and a practical experiment. The method is based on excitation of an object with a sinc signal and sampling the response signals proportional to current flowing through and voltage across the measured impedance. The object’s impedance spectrum is obtained with the use of continuous Fourier transform on the basis of linear approximations between samples in two acquisition sections, connected with the duration of the sinc signal. The method is first evaluated in MATLAB by means of simulation. An influence of the sinc signal duration and the number of samples on impedance modulus and argument measurement errors is explored. The method is then practically verified in a constructed laboratory impedance spectroscopy measurement system. The obtained acceleration of impedance spectroscopy in the low frequency range (below 1 Hz) and the decrease of the number of acquired samples enable to recommend the worked out method for implementation in portable impedance analyzers destined for operation in the field.

Przejdź do artykułu

Abstrakt

The paper stresses the issue of strong temperature influence on the gain of a Silicon Photomultiplier (SiPM). High sensitivity of the detector to light (single photons) requires stable parameters during measurement, including gain. The paper presents a method of compensating the change of gain caused by temperature variations, by adjusting a suitable voltage bias provided by a precise power module. The methodology of the research takes in account applications with a large number of SiPMs (20 thousand), explains the challenges and presents the results of the gain stabilization algorithm.

Przejdź do artykułu

Abstrakt

A high pressure resonator transducer (0 to 100 MPa) devised by the author has been described. The elastic element of the converter consists of a cylinder with an offset arranged axis hole. Quartz resonators were used for the measurement of deformations of the pipe. Based upon the results of the transducer testing, a new algorithmic method for the minimizalizsation of the temperature error, that eliminates the need for a temperature gauge has been worked out.

Przejdź do artykułu

Abstrakt

Testing of varistors using thermography was carried out in order to assess their protective properties against possible overvoltage phenomena in the form of high-level voltage surges. An advantage of the thermography technique is non-contact temperature measurement. It was proposed to assess the properties of varistors working in electronic devices as protective elements, on the basis of estimating temperature increments on varistor surfaces, registered by an infrared camera during surge resistance tests with standard voltage levels. To determine acceptable temperature increments on a tested varistor, preliminary testing was performed of P22Z1 (Littelfuse) and S07K14 (EPCOS) type varistors, working first at a constant load and presently during surge tests,. The thermographic test results were compared with measured varistor capacity values before and after tests. It was found that recording with thermography temperature increments greater than 6°C for both P22Z1 and S07K14 varistor types detects total or partial loss of varistor protective properties. The test results were confirmed by assessment of protective properties of varistors working in output circuits of low nominal voltage devices.

Przejdź do artykułu

Abstrakt

This paper outlines a measurement method of properties of microstructured optical fibers that are useful in sensing applications. Experimental studies of produced photonic-crystal fibers allow for a better understanding of the principles of energy coupling in photonic-crystal fibers. For that purpose, fibers with different filling factors and lattice constants were produced. The measurements demonstrated the influence of the fiber geometry on the coupling level of light between the cores. For a distance between the cores of 15 μm, a very low level (below 2%) of energy coupling was obtained. For a distance of 13 μm, the level of energy transfer to neighboring cores on the order of 2-4% was achieved for a filling factor of 0.29. The elimination of the energycoupling phenomenon between the cores was achieved by duplicating the filling factor of the fiber. The coupling level was as high as 22% in the case of fibers with a distance between the cores of 8.5 μm. Our results can be used for microstructured-fiber sensing applications and for transmission-channel switching in liquid-crystal multi-core photonic fibers.

Przejdź do artykułu

Abstrakt

This paper proposes a method for adjusting light waves propagating in systems composed of photonic fibers, light sources and detection elements. The paper presents the properties of these connections in terms of the loss of signal transmission. Different fiber core areas were analyzed, and measurements of the mode-field diameters (MFDs) of selected fiber structures are presented. The study analyzed two types of LMA (Large Mode Area) fiber structures, and the mode-field diameters of these structures were measured on the basis of the radiation distribution obtained under near-field conditions. The results are compared to the values obtained for a SMF-28 single-mode fiber. The LMA structures analyzed in the paper are characterized by low sensitivity of the MFD parameter to the length of transmitted waves, which creates the possibility of their use as intermediate fibers when connecting optical fibers of different diameters. In the wavelength range from 800 nm to 1600 nm, a 3.5% MFD change was observed for the first investigated LMA structure, and a 1% change was observed for the second. In addition, measurements of the mode-field diameters were also made using the transverse offset method for comparison of the results.

Przejdź do artykułu

Abstrakt

New research trends in energy grids and water networks push toward ICT solutions for allowing remote metering of consumption. In the paper, after an introduction to the European Standards on smart metering, two visual sensors thought to solve typical metering problems in water public networks are described. Particular detail is given hardware and software solutions and the perspective of integration with analog gas and electric energy metering devices.

Przejdź do artykułu

Redakcja

Editor-in-Chief
  • Janusz SMULKO, Gdańsk University of Technology, Poland
International Programme Committee
  • Andrzej ZAJĄC, Chairman, Military University of Technology, Poland
  • Bruno ANDO, University of Catania, Italy
  • Martin BURGHOFF, Physikalisch-Technische Bundesanstalt, Germany
  • Marcantonio CATELANI, University of Florence, Italy
  • Numan DURAKBASA, Vienna University of Technology, Austria
  • Domenico GRIMALDI, University of Calabria, Italy
  • Laszlo KISH, Texas A&M University, USA
  • Eduard LLOBET, Universitat Rovira i Virgili, Tarragona, Spain
  • Alex MASON, Liverpool John Moores University, The United Kingdom
  • Subhas MUKHOPADHYAY, Massey University, Palmerston North, New Zealand
  • Janusz MROCZKA, Wrocław University of Technology, Poland
  • Antoni ROGALSKI, Military University of Technology, Poland
  • Wiesław WOLIŃSKI, Warsaw University of Technology, Poland
Associate Editors
  • Zbigniew BIELECKI, Military University of Technology, Poland
  • Vladimir DIMCHEV, Ss. Cyril and Methodius University, Macedonia
  • Krzysztof DUDA, AGH University of Science and Technology, Poland
  • Janusz GAJDA, AGH University of Science and Technology, Poland
  • Teodor GOTSZALK, Wrocław University of Technology, Poland
  • Ireneusz JABŁOŃSKI, Wrocław University of Technology, Poland
  • Piotr JASIŃSKI, Gdańsk University of Technology, Poland
  • Piotr KISAŁA, Lublin University of Technology, Poland
  • Manoj KUMAR, University of Hyderabad, Telangana, India
  • Grzegorz LENTKA, Gdańsk University of Technology, Poland
  • Czesław ŁUKIANOWICZ, Koszalin University of Technology, Poland
  • Rosario MORELLO, University Mediterranean of Reggio Calabria, Italy
  • Fernando PUENTE LEÓN, University Karlsruhe, Germany
  • Petr SEDLAK, Brno University of Technology, Czech Republic
  • Hamid M. SEDIGHI, Shahid Chamran University of Ahvaz, Ahvaz, Iran
  • Roman SZEWCZYK, Warsaw University of Technology, Poland
Language Editors
  • Andrzej Stankiewicz, Gdańsk University of Technology, Poland
Technical Editors
  • Agnieszka Kondratowicz, Gdańsk University of Technology, Poland

Kontakt

Editorial Office of Metrology and Measurement Systems

Contact:
E-mail: metrology@pg.edu.pl
URL: www.metrology.pg.gda.pl
Phone: (+48) 58 347-1357

Post address:
Editorial Office of Metrology and Measurement Systems
Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics

Instrukcje dla autorów

Types of contributions

The following types of papers are published in Metrology and Measurement Systems:
•    invited review papers presenting the current stage of the knowledge (max. 20 edited pages, 3000 characters each),
•    research papers reporting original scientific or technological advancements (10‒12 pages),
•    papers based on extended and updated contributions presented at scientific conferences (max. 12 pages),
•    short notes, i.e. book reviews, conference reports, short news (max. 2 pages).

Manuscript preparation

The text of a manuscript should be written in clear and concise English. The form similar to “camera-ready” with an attached separate file – containing illustrations, tables and photographs – is preferred. For the details of the preferred format of the manuscripts, Authors should consult a recent issue of the journal or the sample article and the guidelines for manuscript preparation. The text of a manuscript should be printed on A4 pages (with margins of 2.5 cm) using a font whose size is 12 pt for main text and 10 pt for the abstract; an even number of pages is strongly recommended. The main text of a paper can be divided into sections (numbered 1, 2, ...), subsections (numbered 1.1., 1.2., ...) and – if needed – paragraphs (numbered 1.1.1., 1.1.2., ...). The title page should include: manuscript title, Authors’ names and affiliations with e-mail addresses. The corresponding Author should be identified by the symbol of an envelope and phone number. A concise abstract of approximately 100 words and with 3–5 keywords should accompany the main text.
Illustrations, photographs and tables provided in the camera-ready form, suitable for reproduction (which may include reduction) should be additionally submitted one per page, larger than final size. All illustrations should be clearly marked on the back with figure number and author’s name. All figures are to have captions. The list of figures captions and table titles should be supplied on separate page. Illustrations must be produced in black ink on white paper or by computer technique using the laser printer with the resolution not lower than 300 dpi, preferably 600 dpi. The thickness of lines should be in the range 0.2–0.5 mm, in particular cases the range 0.1–1.0 mm will be accepted. Original photographs must be supplied as they are to be reproduced (e.g. black and white or colour). Photocopies of photographs are not acceptable.
References should be inserted in the text in square brackets, e.g. [4]; their list numbered in citation order should appear at the end of the manuscript. The format of the references should be as follows: for a journal paper – surname(s) and initial(s) of author(s), year in brackets, title of the paper, journal name (in italics), volume, issue and page numbers. The exemplary format of the references is available at the sample article.

Manuscript submission and processing

Submission procedure. Manuscript should be submitted via Internet Editorial System (IES) ‒ an online submission and peer review system http://www.editorialsystem.com/mms
In order to submit the manuscript via IES, the authors (first-time users) must create an author account to obtain a user ID and password required to enter the system. From the account you create, you will be able to monitor your submission and make subsequent submissions.
The submission of the manuscript in two files is preferred: “Paper File” containing the complete manuscript (with all figures and tables embedded in the text) and “Figures File” containing illustrations, photographs and tables. Both files should be sent in DOC and PDF format as well as. In the submission letter or on separate page in “Figures File”, the full postal address, e-mail and phone numbers must be given for all co-authors. The corresponding Author should be identified.
Copyright Transfer. The submission of a manuscript means that it has not been published previously in the same form, that it is not under consideration for publication elsewhere, and that – if accepted – it will not be published elsewhere. The Author hereby grants the Polish Academy of Sciences (the Journal Owner) the license for commercial use of the article according to the Open Access License which has to be signed before publication.
Review and amendment procedures. Each submitted manuscript is subject to a peer-review procedure, and the publication decision is based on reviewers’ comments; if necessary, Authors may be invited to revise their manuscripts. On acceptance, manuscripts are subject to editorial amendment to suit the journal style.
An essential criterion for the evaluation of submitted manuscripts is their potential impact on the scientific community, measured by the number of repeated quotations. Such papers are preferred at the evaluation and publication stages.
Proofs. Proofs will be sent to the corresponding Author by e-mail and should be returned within 48 hours of receipt.

Other information

Author Benefits. The publication in the journal is free of charge. A sample copy of the journal will be sent to the corresponding Author free of charge.
Colour. For colour pages the Authors will be charged at the rate of 160 PLN or 80 EUR per page. The payment to the bank account of main distributor must be acquitted before the date pointed to Authors by Editorial Office.

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji