Nauki Biologiczne i Rolnicze

Journal of Plant Protection Research

Zawartość

Journal of Plant Protection Research | 2019 | vol. 59 ahead of print |

Abstrakt

The granary weevil, Sitophilus granarius (L.), is one of the most important internal feeders of stored grain. Nanotechnology has become one of the most promising new approaches for pest control in recent years. In our screening program, laboratory trials were conducted to determine the effectiveness of silica nanoparticles (SNPs) and zinc nanoparticles (ZNPs) against the larval stage and adults of S. granarius on stored wheat. Nanoparticles of silica and zinc were synthesized through a solvothermal method. They were then used to prepare insecticidal solutions of different concentrations and tested on S. granarius. Silica nanoparticles (SNPs) were found to be highly effective against S. granarius causing 100% mortality after 2 weeks. ZNPs were moderately effective against this pest.

Przejdź do artykułu

Abstrakt

Potato leaf blight disease caused by Ulocladium atrum (Syn. Stemphylium atrum) is an important and epidemic disease in potato-growing regions of Iran. In this study, 30 isolates of the disease were collected from the main potato-growing regions of Iran and were analyzed on the basis of morphological characterization and pathogenicity. Based on morphological characteristics, all isolates were identified as U. atrum. Pathogenicity studies indicated that all 30 isolates were pathogenic on potato “Agria” to varying degrees. Five U. atrum isolates causing potato leaf blight disease, obtained from the Plant Pathology Laboratory, Isfahan Research Center for Agriculture and Natural Resources, Isfahan, Iran, were also examined in this study. A total of 35 isolates were genetically analyzed using random amplified polymorphic DNA (RAPD) and inter-simple sequence repeats (ISSR) markers. Cluster analysis using the un-weighted pair group method with the arithmetic average (UPGMA) method for RAPD marker revealed no clear grouping of the isolates obtained from different geographical regions. The groupings, based on morphological characteristics, virulence variability and RAPD analysis, were not correlated. Cluster analysis using Jaccard’s coefficient for ISSR divided the U. atrum isolates into four main groups, in which there was no significant correlation between the isolate groupings regarding their geographic location and pathogenicity. Using molecular techniques genetic variability was detected among the accessions, with cophenetic correlation coefficients (CCC) of 0.80 for RAPDs and 0.89 for ISSRs. The RAPD and ISSR marker results corresponded well, with a correlation of 0.55.

Przejdź do artykułu

Abstrakt

Semiochemicals are defined as informative molecules mainly used in plant-insect or insect-insect interactions as alternative or complementary components to insecticide approaches in different integrated pest management strategies. They are used to manipulate insect behaviour by affecting the survival and/or reproduction of insect pests for controlling their infestations on crops. The present review provides a basic summary of the utilization of semiochemicals for controlling insect pests. Two main topics were explored in this study. The first topic focuses on a description of semiochemicals and their types (pheromones and allelochemicals). Pheromones represent an intraspecific communication amidst members of the same species. Allelochemicals, produced by individuals of one species, modify the behavior of individuals of a different species (i.e. an interspecific effect). Allelochemicals include different informative molecules such as: allomones, kairomones, synomones, antimones and apneumones. The second topic focuses on the application of semiochemicals in IPM programs. Different semiochemicals are included in integrated pest management programs in various ways such as monitoring, mass trapping, attract-and-kill, push-pull, and disruption strategies. Pheromones are promising and can be used singly or in integration with other control strategies for monitoring and controlling insect pests in agricultural systems. For example, sex pheromones have been applied in mass trapping, disruption and attract-and-kill tactics in IPM programs.

Przejdź do artykułu

Abstrakt

Kiwifruit (Actinidia deliciosa) is one of the most significant commercial crops in Iran. In 2015 a destructive disease of kiwifruits was observed in orchards, storage facilities and retail markets, resulting in great economic loss to producers. In this study phenotypic and molecular techniques were applied to characterize the causal agent of kiwifruit rot observed in Mazandaran province, northern Iran. From the similarity among the results of pathogenicity tests, equivalency with standard taxonomic criteria for disease and PCR-based analysis of the ITS region, all the isolates were identified as Botryosphaeria dothidea.

Przejdź do artykułu

Abstrakt

Seed-borne diseases of wheat such as Fusarium head blight (FHB), a fungal disease caused by several species of Fusarium, results in reduced yield and seed quality. The aim of this study was to identify the Fusarium species, the effect of Fusarium-infected seeds on germination and vigor indices and to determine the location of Fusarium spp. in seeds, as well as to investigate the pathogenicity and variability of aggressiveness of the isolates obtained from pre-basic seeds wheat fields in Iran. According to morphological and molecular characters, the species F. graminearum, F. culmorum, F. avenaceum and F. poae were identified. Among the isolates, F. graminearum was the predominant species with the highest frequency and relative density of 92.9% and 70.9%, respectively. We observed that germination and vigor indices were decreased due to increased Fusarium-infected seeds. Results indicated significant differences among cultivars and seed-borne Fusarium levels. While a higher infection level of Fusarium spp. most commonly occurred in the seed coat, only F. graminearum was observed in embryos. Our study about pathogenicity showed that 77.3% of the Fusarium spp. isolates were not pathogenic and 22.7% isolates of Fusarium spp. were pathogenic or weakly pathogenic. Our results indicated that variability in aggressiveness among isolates of a species and positive correlation may be determined by pathogenicity tests. This is the first time the location of Fusarium spp. in seeds has been identified. It is also the first time that Fusarium-infected seeds in pre-basic seeds wheat fields of Iran have been evaluated.

Przejdź do artykułu

Abstrakt

The cotton mealybug, Phenacoccus solenopsis (Tinsley) (Hemiptera: Pseudococcidae), has become a widespread pest causing serious losses in several economically important crops, particularly cotton. To the best of our knowledge this is the first record of cotton mealybug, P. solenopsis as a new pest of potato plants in Egypt. The insect was noticed on potato plants for the first time during the growing season of 2016 (mid-August 2016). Mealybug specimens were collected from infested potato plants and identified as P. solenopsis. In an attempt to control this insect pest species, seven insecticides viz. sulfoxaflor, abamectin + thiamethoxam, spirotetramat, thiamethoxam, imidacloprid, buprofezin, and pymetrozine, belonging to different chemical groups, were tested for their effect against nymphs and adult females of P. solenopsis on potato under field conditions. The obtained results indicated that sulfoxaflor, abamectin + thiamethoxam and spirotetramat had the highest efficacy against P. solenopsis recording 80.3–96.05% reduction of the insect population after 21 days of application. Thiamethoxam, imidacloprid, buprofezin and pymetrozine failed to exhibit sufficient P. solenopsis control.

Przejdź do artykułu

Abstrakt

The excessive use of pesticides is a problem in most parts of the world today because of their broad and unspecific target range that is considerably harmful. The accumulation of several chemical insecticide residues based on chlorpyrifos-methyl, organochlorine, different isomers of HCH, DDT etc., in Triticum aestivum L. plants can be dangerous. Hence, there is an urgent need to develop potential and safer alternative measures. Wheat (Triticum aestivum L.) is a major cereal crop grown and used for food, animal feed, beverages and furniture accessories in most parts of the world. It also serves as a host to various insect pests. Our previous studies showed the insecticidal potency and specificity of short ssDNA oligonucleotides from the inhibitor of apoptosis (IAP-2 and IAP-3) genes of Lymantria dispar multicapsid nuclear polyhedrosis virus (LdMNPV) against gypsy moth (L. dispar) larvae, a possible insect pest of non-host plants like wheat. Consequently, the present study analyzes the effects of ssDNA oligonucleotides used as DNA insecticides on wheat (T. aestivum) plant biomass, plant organs and some biochemical parameters as a marker of the safety margin on non-target organisms. The results obtained on plant biomass showed that groups treated with ssDNA oligonucleotides at concentrations of 0.01 pmol · μl−1, 0.1 pmol · μl−1 and 1 pmol · μl−1 varied in comparison with the control group, but remained harmless to plant growth and development, while the treatment concentration of 0.001 pmol · μl−1 did not affect the plant biomass. The glucose, protein and phosphorous biochemical parameters, analyzed after 21 days, showed that the ssDNA oligonucleotides used were equally safe. The data obtained for the plant organs (leaves and root lengths) indicate that the phenomenon of DNA insecticides can be further studied and developed for plant protection while improving the growth of plant organs even for a non-target organism such as wheat T. aestivum plants.

Przejdź do artykułu

Redakcja

Editor-in-Chief Prof. Henryk Pospieszny Department of Virology and Bacteriology Institute of Plant Protection - National Research Institute Władysława Węgorka 20, 60-318 Poznań, Poland e-mail: H.Pospieszny@iorpib.poznan.pl Associate Editors Dr. Zbigniew Czaczyk (Agricultural Engineering) Poznan Univeristy of Life Sciences, Poznań, Poland Dr. Magdalena Jakubowska (Entomology) Institute of Plant Protection - National Research Institute, Poznań, Poland Dr. Sylwia Kaczmarek (Weed Science) Institute of Plant Protection - National Research Institute, Poznań, Poland Dr. Piotr Kaczyński (Pesticide Residue) Institute of Plant Protection - National Research Institute, Poznań, Poland Dr. Chetan Keswani (Biological Control) Institute of Science, Banaras Hindu University, Varanasi, India Dr. Tomasz Klejdysz (Entomology) Institute of Plant Protection - National Research Institute, Poznań, Poland Dr. Franciszek Kornobis (Zoology) Institute of Plant Protection - National Research Institute, Poznań, Poland Dr. Karlos Lisboa (Biotechnology) Institute of Chemistry and Biotechnology, Federal University of Alagoas, Alagoas, Brazil Dr. Vahid Mahdavi (Entomology) University of Mohaghegh Ardabili, Ardabil, Iran Dr. Kinga Matysiak (Weed Science) Institute of Plant Protection - National Research Institute, Poznań, Poland Dr. Yongzhi Wang (Virology and Bacteriology) Jilin Academy of Agricultral Sciences, Changchun, Jilin Province, China Dr. Przemysław Wieczorek (Biotechnology) Institute of Plant Protection - National Research Institute, Poznań, Poland Dr. Huan Zhang (Plant Pathology) Texas A&M University, Texas, USA Managing Editors Małgorzata Maćkowiak e-mail: m.mackowiak@iorpib.poznan.pl Monika Kardasz e-mail: m.kardasz@iorpib.poznan.pl Proofreaders in English Delia Gosik Halina Staniszewska-Gorączniak Statistical Editor Dr. Jan Bocianowski Technical Editor Tomasz Adamski

Kontakt

Journal of Plant Protection Research

Institute of Plant Protection
National Research Institute
Władysława Węgorka 20
60–318 Poznań, Poland

tel.: +48 61 864 90 30
e-mail: office@plantprotection.pl

Managing Editors

Malgorzata Mackowiak
m.mackowiak@iorpib.poznan.pl

Monika Kardasz
m.kardasz@iorpib.poznan.pl

Instrukcje dla autorów

Instructions for Authors

Manuscripts published in JPPR are free of charge. Only colour figures and photos are payed 61.5 € per one colour page JPPR publishes original research papers, short communications, critical reviews, and book reviews covering all areas of modern plant protection. Subjects include phytopathological virology, bacteriology, mycology and applied nematology and entomology as well as topics on protecting crop plants and stocks of crop products against diseases, viruses, weeds, etc. Submitted manuscripts should provide new facts or confirmatory data. All manuscripts should be written in high-quality English. Non-English native authors should seek appropriate help from English-writing professionals before submission. The manuscript should be submitted only via the JPPR Editorial System (http://www.editorialsystem.com/jppr). The authors must also remember to upload a scan of a completed License to Publish (point 4 and a handwritten signature are of particular importance). ALP form is available at the Editorial System. The day the manuscript reaches the editors for the first time is given upon publication as the date ‘received’ and the day the version, corrected by the authors is accepted by the reviewers, is given as the date ‘revised’. All papers are available free of charge at the Journal’s webpage (www.plantprotection.pl). However, colour figures and photos cost 61.5 € per one colour page.

General information for preparing a manuscript

All text should be written in a concise and integrated way, by focusing on major points, findings, breakthrough or discoveries, and their broad significance. All running text should be in Times New Roman 12, 1.5 spacing with all margins 2.5 cm on all sides.

Original article

The original research articles should contain the following sections: Title – the title should be unambiguous, understandable to specialists in other fields, and must reflect the contents of the paper. No abbreviations may be used in the title. Name(s) of author(s) with affiliations footnoted added only to the system, not visible in the manuscript (Double Blind Reviews). The names of the authors should be given in the following order: first name, second name initial, surname. Affiliations should contain: name of institution, faculty, department, street, city with zip code, and country. Abstract – information given in the title does not need to be repeated in the abstract. The abstract should be no longer than 300 words. It must contain the aim of the study, methods, results and conclusions. If used, abbreviations should be limited and must be explained when first used. Keywords – a maximum of 6, should cover the most specific terms found in the paper. They should describe the subject and results and must differ from words used in the title. Introduction – a brief review of relevant research (with references to the most important and recent publications) should lead to the clear formulation of the working hypothesis and aim of the study. It is recommended to indicate what is novel and important in the study. Materials and Methods – in this section the description of experimental procedures should be sufficient to allow replication. Organisms must be identified by scientific name, including authors. The International System of Units (SI) and their abbreviations should be used. Methods of statistical processing, including the software used, should also be listed in this section. Results – should be presented clearly and concisely without deducting and theori sing. Graphs should be preferred over tables to express quantitative data. Discussion – should contain an interpretation of the results ( without unnecessary repetition) and explain the influence of experimental factors or methods. It should describe how the results and their interpretation relate to the scientific hypothesis and/or aim of the study. The discussion should take into account the current state of knowledge and up-to-date literature. It should highlight the significance and novelty of the paper. It may also point to the next steps that will lead to a better understanding of the matters in question. Acknowledgements – of people, grants, funds, etc. should be placed in a separate section before the reference list. The names of funding organizations should be written in full. References In the text, papers with more than two authors should be cited by the last name of the first author, followed by et al. (et al. in italics), a space, and the year of publication (example: Smith et al. 2012). If the cited manuscript has two authors, the citation should include both last names, a space, and the publication year (example: Marconi and Johnston 2006). In the Reference section, a maximum of ten authors of the cited paper may be given. All references cited in the text must be listed in the Reference section alphabetically by the last names of the author(s) and then chronologically. The year of publication follows the authors’ names. All titles of the cited articles should be given in English. Please limit the citation of papers published in languages other than English. If necessary translate the title into English and provide information concerning the original language in brackets (e.g. in Spanish). The list of references should only include works from the last ten years that have had the greatest impact on the subject. Older references can be cited only if they are important for manuscript content. The full name of periodicals should be given. If possible, the DOI number should be added at the end of each reference. The following system for arranging references should be used: Journal articles Jorjani M., Heydari A., Zamanizadeh H.R., Rezaee S., Naraghi L., Zamzami P. 2012. Controlling sugar beet mortality disease by application of new bioformulations. Journal of Plant Protection Research 52 (3): 303-307. DOI: https://doi.org/10.2478/v10045-012-0049-9 Online articles Turner E., Jacobson D.J., Taylor J.W. 2011. Genetic architecture of a reinforced, postmating, reproductive isolation barrier between Neurospora species indicates evolution via natural selection. PLoS Genetics 7 (8): e1002204. DOI: https://doi.org/10.1371/journal.pgen.1002204 Books Bancrof J.D., Stevens A. 1996. Theory and Practice of Histological Techniques. 4th ed. Churchill Livingstone, Edinburgh, UK, 776 pp. Book chapters Pradhan S.K. 2000. Integrated pest management. p. 463-469. In: "IPM System in Agriculture. Cash Crop" (R.K. Upadhyaya, K.G. Mukerji, O.P. Dubey, eds.). Aditya Books Pvt. Ltd. New Delhi, India, 710 pp. Online documents Cartwright J. 2007. Big stars have weather too. IOP Publishing PhysicsWeb. Available on: https://doi.org/10.1371/journal.pgen.1002204

Tables, Figures, Phothographs, Drawings

Tables and figures should be uploaded as separated files at the submission stage. Their place in the manuscript should be clearly indicated by authors. Colour figures are accepted at no charge for the electronic version. In the hardcopy version of the journal, colour figures cost (65,5 € per one colour page). When attaching files please indicate if you want colour only in the online version or in both the online and the hardcopy. Photographs and RGB bitmaps should be provided in JPG or TIFF file format. They must have no less than 300 dpi resolution. The text column should be 8 cm wide and they must be at least 1000 pixels wide. Please send original (not resized) photograph(s), straight from a digital camera, without any text descriptions on the photo. Bitmaps combined with text object descriptions should be provided in MS Word or MS Powerpoint format. Text objects using Arial font-face should be editable (changing font-face or font size). Drawings should be provided in MS Word, MS Powerpoint, CorelDRAW or EPS file format and stored with original data file. Text objects using Arial font-face should be editable (changing font-face or font size). Charts (MS Excel graphs) should be provided in MS Excel file format, and stored with original MS Excel data file without captions but with the number of the figure attached. Please do not use bitmap fills for bar charts. Use colour fills only if necessary. Captions and legends should be added at the end of the text, referred to as "Fig." and numbered consecutively throughout the paper.

Rapid communications

Rapid communications should present brief observations which do not warrant the length of a full paper. However, they must present completed studies and follow the same scientific standards as original articles. Rapid communications should contain the following sections: Title Abstract - less than 300 words Key words - maximum 6 Text body Acknowledgements References The length of such submissions is limited to 1500 words for the text, one table, and one figure.

Reviews

Review articles are invited by the editors.Unsolicited reviews are also considered. The length is limited to 5000 words with no limitations on figures and tables and a maximum of 150 references. Mini-Review articles should be dedicated to "hot" topics and limited to 3000 words and a maximum two figures, two tables and 20 references.

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji