Applied sciences

International Journal of Electronics and Telecommunications

Content

International Journal of Electronics and Telecommunications | 2019 | vol. 65 | No 2 |

Abstract

In the paper the problem of modelling thermal properties of semiconductor devices with the use of compact models is presented. This class of models is defined and their development over the past dozens of years is described. Possibilities of modelling thermal phenomena both in discrete semiconductor devices, monolithic integrated circuits, power modules and selected electronic circuits are presented. The problem of the usefulness range of compact thermal models in the analysis of electronic elements and circuits is discussed on the basis of investigations performed in Gdynia Maritime University.

Go to article

Abstract

A low drop-out [LDO] voltage regulator with fast transient response which does not require a capacitor for proper operation is proposed in this paper. Recent cap-less LDOs do not use off chip capacitor but instead they use on chip capacitor which occupy a large area on the chip. In the proposed LDO, this on chip capacitor is also avoided. A novel secondary local feedback technique is introduced which helps to achieve a good transient response even in the absence of output capacitor. Further an error amplifier that does need compensation capacitor is selected to reduce the on chip area. Stability analysis shows that the proposed LDO is stable with a phase margin of 78°. The proposed LDO is laid out using Cadence Virtuoso in 180 nm standard CMOS technology. Post layout simulation is carried out and LDO gives 6mV=V and 360µV=mA line and load regulation respectively. An undershoot of 120 mV is observed during the load transition from 0 mA to 50 mA in 1 µs transition time, however LDO is able to recover within 1:4 µs. Since capacitor is not required in any part of design, it occupies only 0:010824 mm2 area on the chip.

Go to article

Abstract

A compact planar multiband antenna operating at 3.1 (S-band) /4.7/6.4/7.6 (C-band) /8.9/10.4/11.8 GHz (X-band) is presented. The proposed Microstrip Patch Antenna (MSPA) consists of a rectangular radiator in which an E-shaped slot is etched out and a microstrip feed line. The E-shaped slot modifies the total current path thereby making the antenna to operate at seven useful bands. No external impedance matching circuit is used and the impedance matching at these bands are solely achieved by using a rectangular microstrip feed line of length 10mm (L6) and width 2mm (W10). The antenna has a compact dimension of ���� × ���� × ��. �� ������ and exhibits S11<-10dB bandwidth of about 6.45% (3.2-3.0GHz), 8.5% (4.9-4.5GHz), 7.6% (6.7-6.2GHz), 3.9% (7.8-7.5GHz), 5.7% (9.1-8.6GHz), 1.2% (10.44-10.35GHz) and 2.2% (11.87-11.62GHz). The simulation analysis of the antenna is carried out by using HFSS v.13.0.

Go to article

Abstract

The paper presents the concept of a fully planar treeshaped antenna with quasi-fractal geometry. The shape of the proposed radiator is based on a multi-resonant structure. Developed planar tree has symmetrical branches with different length and is fed by a coplanar waveguide (CPW) with modified edge of the ground plane. The antenna of size 29 mm x25 mm has been designed on Taconic - RF-35 substrate (r = 3.5, tg= 0.0018, h = 0.762 mm). The paper shows simulated and measured characteristics of return loss, as well as measured radiation patterns. The proposed antenna could be a good candidate for broadband applications (for instance: wideband imaging for medical application and weather monitoring radars in satellite communication etc.)

Go to article

Abstract

This electronic paper presents an innovative technology for efficient use of the radio spectrum. This new frequency reconfigurable rotatable antenna is intended for wireless applications such as WLAN, WiMAX and Bluetooth mobile applications. The working principle of this proposed work is to print square patches mounted on the same circular dielectric substrate feed by a proximity coupling to eliminate the noise signal transmission and problems related to interference. The three positions correspond to an operating frequency controlled by a bipolar step-by-step engine. An optimization of the structure using the FEM finite element method as well as a comparison with other structures recently realized are detailed in this paper. The final numerical simulation results are: WLAN 4.95-5.53 GHz (BW = 11%) Gain = 6.06 dBi, WiMAX 3.35-3.75 GHz (BW = 11.2%) Gain = 7.48 dBi and Bluetooth 2.3-2.51 GHz (BW = 8.7%) Gain = 17.78 dBi.

Go to article

Abstract

MIMO technology has become very popular in a wireless communication system because of the many advantages of multiple antennas at the transmitting end and receiving end. The main advantages of MIMO systems are higher data rate and higher reliability without the need of extra power and bandwidth. The MIMO system provides higher data rate by using spatial multiplexing technique and higher reliability by using diversity technique. The MIMO systems have not only advantages, but also have disadvantages. The main disadvantage of MIMO system is that the multiple antennas required extra high cost RF modules. The extra RF modules increase the cost of wireless communication systems. In this research, the antenna selection techniques are proposed to minimize the cost of MIMO systems. Furthermore, this research also presents techniques for antenna selection to enhance the capacity of channel in MIMO systems.

Go to article

Abstract

In this paper, a novel double-layer multiband circularly polarized microstrip patch antenna is proposed. The design employs the concept of slotted patch fed with proximity coupled feed having defected ground plane (DGS). The proposed antenna achieves multiple operating frequency bands including FB1 (11.15 GHz), FB2 (4.17 GHz), FB3 (4.87 GHz) and FB4 (1.98 GHz). The proposed antenna has obtained bandwidth of 12.98%, 4.7%, 4.69% and 5.39% at FB1, FB2, FB3 and FB4 bands, respectively. The proposed antenna also exhibits circular polarization in the frequency band FB4. The 3dB ARBW of the antenna is 9.23% at 11.2 GHz. Finally, a metallic cavity is used with the antenna to achieve a unidirectional radiation pattern. The designed antenna radiation characteristics are verified with the experimental results.

Go to article

Abstract

Nowadays, alternative models of elliptic curves like Montgomery, Edwards, twisted Edwards, Hessian, twisted Hessian, Huff’s curves and many others are very popular and many people use them in cryptosystems which are based on elliptic curve cryptography. Most of these models allow to use fast and complete arithmetic which is especially convenient in fast implementations that are side-channel attacks resistant. Montgomery, Edwards and twisted Edwards curves have always order of group of rational points divisible by 4. Huff’s curves have always order of rational points divisible by 8. Moreover, sometimes to get fast and efficient implementations one can choose elliptic curve with even bigger cofactor, for example 16. Of course the bigger cofactor is, the smaller is the security of cryptosystem which uses such elliptic curve. In this article will be checked what influence on the security has form of cofactor of elliptic curve and will be showed that in some situations elliptic curves with cofactor divisible by 2m are vulnerable for combined small subgroups and side-channel attacks.

Go to article

Abstract

The biggest software development companies conduct daily more than hundreds deployments which influence currently operating IT (Information Technology) systems. This is possible due to the availability of automatic mechanisms which are providing their functional testing and later applications deployment. Unfortunately, nowadays, there are no tools or even a set of good practices related to the problem on how to include IT security issues into the whole production and deployment processes. This paper describes how to deal with this problem in the large mobile telecommunication operator environment.

Go to article

Abstract

Of late, the science of Remote Sensing has been gaining a lot of interest and attention due to its wide variety of applications. Remotely sensed data can be used in various fields such as medicine, agriculture, engineering, weather forecasting, military tactics, disaster management etc. only to name a few. This article presents a study of the two categories of sensors namely optical and microwave which are used for remotely sensing the occurrence of disasters such as earthquakes, floods, landslides, avalanches, tropical cyclones and suspicious movements. The remotely sensed data acquired either through satellites or through ground based- synthetic aperture radar systems could be used to avert or mitigate a disaster or to perform a post-disaster analysis.

Go to article

Abstract

This work presents the results of numerical modeling of Karman vortex street generation performed with ANSYS/FLUENT package application. The influence of the mechanical elements located downstream of the bluff body on the vortex frequency has been found during earlier laboratory investigations. Five various geometrical configurations have been tested. Considerable differences in pictures of distributions of pressure, horizontal and vertical velocities have appeared for various configurations. Qualitative as well as quantitative results are presented in the paper. They confirm the significant dependence of the Karman vortex street parameters on the meter configuration.

Go to article

Abstract

The following paper provides an insight into application of the contemporary heuristic methods to graph coloring problem. Variety of algorithmic solutions for the Graph Coloring Problem (GCP) are discussed and recommendations for their implementation provided. The GCP is the NP-hard problem, aiming at finding the minimum number of colors for vertices in such a way that none of two adjacent vertices are marked with the same color. With the advent of modern processing units metaheuristic approaches to solve GCP were extended to discrete optimization here. To explain the phenomenon of these methods, a thorough survey of AI-based algorithms for GCP is provided, with the main differences between specific techniques pointed out.

Go to article

Abstract

Multiple Input Multiple Output (MIMO (techniques use multiple antennas at both transmitter and receiver for increasing the channel reliability and enhancing the spectral efficiency of wireless communication system.MIMO Spatial Multiplexing (SM) is a technology that can increase the channel capacity without additional spectral resources. The implementation of MIMO detection techniques become a difficult mission as the computational complexity increases with the number of transmitting antenna and constellation size. So designing detection techniques that can recover transmitted signals from Spatial Multiplexing (SM) MIMO with reduced complexity and high performance is challenging. In this survey, the general model of MIMO communication system is presented in addition to multiple MIMO Spatial Multiplexing (SM) detection techniques. These detection techniques are divided into different categories, such as linear detection, Non-linear detection and tree-search detection. Detailed discussions on the advantages and disadvantages of each detection algorithm are introduced. Hardware implementation of Sphere Decoder (SD) algorithm using VHDL/FPGA is also presented.

Go to article

Abstract

Faithfull detection of non-utilized spectrum hole in available channel is a crucial issue for cognitive radio network. Choosing the best available channel for a secondary user transmission includes settling on decision of accessible choices of free frequency spectrum based on multiple objectives. Thus channel judgment can be demonstrated as several objective decision making (MODM) problem. An ultimate goal of this exploration is to define and execute a technique for multiple objective optimizations of multiple alternative of channel decision in Adhoc cognitive radio network. After a coarse review of an articles related to the multiple objective decision making within a process of channel selection, Multiple Objective Optimization on the basis of the Ratio Analysis (MOORA) technique is taken into consideration. Some important objectives values of non-utilized spectrum collected by a fusion center are proposed as objectives for consideration in the decision of alternatives. MOORA method are applied to a matrix of replies of each channel alternatives to channel objectives which results in set ratios. Among the set of obtained dimensionless ratios, all the channel alternatives are ranked in descending order. In MOORA, channel choices with moderate objectives can top in ranking order, which is hardly conceivable with linearly weighted objectives of the different channel by using different decision making technique.

Go to article

Abstract

The data aggregation process of wireless sensor networks faces serious security problems. In order to defend the internal attacks launched by captured nodes and ensure the reliability of data aggregation, a secure data aggregation mechanism based on constrained supervision is proposed for wireless sensor network, which uses the advanced LEACH clustering method to select cluster heads. Then the cluster heads supervise the behaviors of cluster members and evaluate the trust values of nodes according to the communication behavior, data quality and residual energy. Then the node with the highest trust value is selected as the supervisor node to audit the cluster head and reject nodes with low trust values. Results show that the proposed mechanism can effectively identify the unreliable nodes, guarantee the system security and prolong the network lifetime.

Go to article

Abstract

In a rectilinear route, a moving sink is restricted to travel either horizontally or vertically along the connecting edges. We present a new algorithm that finds the shortest round trip rectilinear route covering the specified nodes in a grid based Wireless Sensor Network. The proposed algorithm determines the shortest round trip travelling salesman path in a two-dimensional grid graph. A special additional feature of the new path discovery technique is that it selects that path which has the least number of corners (bends) when more than one equal length shortest round trip paths are available. This feature makes the path more suitable for moving objects like Robots, drones and other types of vehicles which carry the moving sink. In the prosed scheme, the grid points are the vertices of the graph and the lines joining the grid points are the edges of the graph. The optimal edge set that forms the target path is determined using the binary integer programming.

Go to article

Abstract

Visible Light Communication (VLC) is a technique for high-speed, low-cost wireless data transmission based on LED luminaries. Wireless LAN environments are a major application of VLC. In these environments, VLC is used in place of traditional systems such as Wi-Fi. Because of the physical characteristics of visible light, VLC is considered to be superior to traditional radio-based communication in terms of security. However, as in all wireless systems, the security of VLC with respect to eavesdropping, signal jamming and modification must be analyzed. This paper focuses on the aspect of jamming in VLC networks. In environments where multiple VLC transmitters are used, there is the possibility that one or more transmitters will be hostile (or “rogue”). This leads to communication disruption, and in some cases, the hijacking of the legitimate data stream. In this paper we present the theoretical system model that is used in simulations to evaluate various rogue transmission scenarios in a typical indoor environment. The typical approach used so far in jamming analysis assumes that all disruptive transmissions may be modeled as Gaussian noise, but this assumption may be too simplistic. We analyze and compare two models of VLC jamming: the simplified Gaussian and the exact model, where the full characteristics of the interfering signal are taken into account. Our aim is to determine which methodology is adequate for studying signal jamming in VLC systems.

Go to article

Abstract

This research proposes a method to enhance the payload message by embedding messages on the dilated edge areas by the Least Significant Bit (LSB) method. To add security aspects to messages, messages are not embedded directly on the LSB but encrypted with XOR operations with Most Significant Bit (MSB). The experimental results of the test in this study showed that the dilation process to some extent can increase the payload of 18.65% and the average bpp is 1.42 while maintaining the imperceptibilty quality of stego image with an average PSNR value of about 47 dB, SSIM is 0.9977 and MSE is 1.13.

Go to article

Abstract

At present, most of the existing target detection algorithms use the method of region proposal to search for the target in the image. The most effective regional proposal method usually requires thousands of target prediction areas to achieve high recall rate.This lowers the detection efficiency. Even though recent region proposal network approach have yielded good results by using hundreds of proposals, it still faces the challenge when applied to small objects and precise locations. This is mainly because these approaches use coarse feature. Therefore, we propose a new method for extracting more efficient global features and multi-scale features to provide target detection performance. Given that feature maps under continuous convolution lose the resolution required to detect small objects when obtaining deeper semantic information; hence, we use rolling convolution (RC) to maintain the high resolution of low-level feature maps to explore objects in greater detail, even if there is no structure dedicated to combining the features of multiple convolutional layers. Furthermore, we use a recurrent neural network of multiple gated recurrent units (GRUs) at the top of the convolutional layer to highlight useful global context locations for assisting in the detection of objects. Through experiments in the benchmark data set, our proposed method achieved 78.2% mAP in PASCAL VOC 2007 and 72.3% mAP in PASCAL VOC 2012 dataset. It has been verified through many experiments that this method has reached a more advanced level of detection.

Go to article

Abstract

A variety of algorithms allows gesture recognition in video sequences. Alleviating the need for interpreters is of interest to hearing impaired people, since it allows a great degree of self-sufficiency in communicating their intent to the non-sign language speakers without the need for interpreters. State-of-theart in currently used algorithms in this domain is capable of either real-time recognition of sign language in low resolution videos or non-real-time recognition in high-resolution videos. This paper proposes a novel approach to real-time recognition of fingerspelling alphabet letters of American Sign Language (ASL) in ultra-high-resolution (UHD) video sequences. The proposed approach is based on adaptive Laplacian of Gaussian (LoG) filtering with local extrema detection using Features from Accelerated Segment Test (FAST) algorithm classified by a Convolutional Neural Network (CNN). The recognition rate of our algorithm was verified on real-life data.

Go to article

Abstract

In this article the magnetic memory model with nano-meter size made from iron cells was proposed. For a purpose of determining the model specifications, the magnetic probes group with different geometrical parameters were examined using numeric simulations for the two different time duration of transitions among quasistable magnetic distributions found in the system, derived from the energy minimums. The geometrical parameters range was found, for which the 16 quasi–stable energetic states exist for the each probe. Having considered these results the 4 bits magnetic cells systems can be designed whose state is changed by spin-polarized current. Time dependent current densities and the current electron spin polarization directions were determined for all cases of transitions among quasi–stable states, for discovered set of 4 bits cells with different geometrical parameters. The 16- states cells, with the least geometrical area, achieved the 300 times bigger writing density in comparison to actual semiconductor solutions with the largest writing densities. The transitions among quasi-stable states of cells were examined for the time durations 105 times shorter than that for up to date solutions.

Go to article

Abstract

This paper proposes a unique method of an error detection and correction (EDAC) circuit, carried out using arithmetic logic blocks. The modified logic blocks circuit and its auxiliary components are designed with Boolean and block reduction technique, which reduced one logic gate per block. The reduced logic circuits were simulated and designed using MATLAB Simulink, DSCH 2 CAD, and Microwind CAD tools. The modified, 2:1 multiplexer, demultiplexer, comparator, 1-bit adder, ALU, and error correction and detection circuit were simulated using MATLAB and Microwind. The EDAC circuit operates at a speed of 454.676 MHz and a slew rate of -2.00 which indicates excellence in high speed and low-area.

Go to article

Abstract

A new simple design methodology which makes LDR output nearly insensitive to jumps of the load current for long times is proposed. This methodology is tested for more than 104 seconds. Our procedure leans on cross coupling of the time second derivative of the LDR power transistor gate and drain voltages along with their currents. This technique keeps low values of these currents in order of nano or hundreds of micro amperes for undershot or overshot cases, respectively. The introduced methodology has been applied to a standard CMOS of 0.18μm technology for NMOS transistors and validated using MATLAB R2014a.

Go to article

Abstract

A low power regenerative comparator is very useful in Successive Approximation Register (SAR) type Analog to Digital Converter (ADC) for a Wireless Sensor Node (WSN). A regenerative type comparator generates output pulses by comparing input with a reference input. This paper deals with control of a power with an adjustable duty cycle. The regenerative comparator with an adjustable duty cycle and a positive feedback of a latch will help in improving accuracy, speed and also in achieving the less power consumption. The optimum value of a duty cycle is determined with metastability timing constraints. The proposed low power regenerative comparator circuit is designed and simulated by using TSMC 180 nm CMOS technology. The comparator consumes power as low as 298.54 nW with a regenerative time 264 ps at 1 V power supply.

Go to article

Editorial office

Editor-in-Chief
Ryszard S. Romaniuk, Warsaw University of Technology, Institute of Electronic Systems, Poland

Managing Editor
Danuta Sobczak-Bartosiewicz, Warsaw University of Technology, Poland

Technical Editors
Grzegorz Borowik, Warsaw University of Technology, Institute of Telecommunications, Poland
Maciej Linczuk, Warsaw University of Technology, Institute of Electronic Systems, Poland

Secretary in-Charge
Danuta Ojrzenska-Wojter, Warsaw University of Technology, Institute of Telecommunications, Poland

Administrative Assistant
Danuta Sobczak-Bartosiewicz, Warsaw University of Technology, Poland

Technical Secretary
Michał Ramotowski, Warsaw University of Technology, Poland


Editorial Advisory Board
Prof. Victor-Valeriu Patriciu, Director Doctoral School of Electronics, Informatics and Communications for Defense and Security, Military Technical Academy Bucharest, Romania, Romania

Prof. Bart Scheers, Royal Military Academy, Belgium

Dr. Eli Winjum, Norwegian Defence Research Establishment, Norway

Wladyslaw Skarbek, Warsaw University of Technology, IRE, Poland

Christian Napoli, University of Catania, Italy

Rosario Giunta, University of Catania, Italy

Christopher Chiu, University of Technology Sydney, Australia

Prof. Emiliano Tramontana, University of Catania, Italy

Prof Robin Braun, University of Technology Sydney, Australia

Dr David Davis, University of Technology Sydney, Australia

dr Brian Culshaw, University of Strathclyde, UK, United Kingdom

Grzegorz Chmaj, University of Nevada, United States

Giuseppe Pappalardo, University of Catania, Italy

Michael Affenzeller, University of Applied Sciences Upper Austria

Prof. Stavros Hatzopoulos, Laboratory of Hearing Science Audiology Dept., University of Ferrara, Italy, Italy

Prof Nikita M Ryskin, Saratov State University, Russian Federation

Prof. Adam Wolisz, Technische Universität Berlin, Department of Electrical Engineering and Computer Science Telecommunication Networks

Prof. Edmundo Monteiro, Departamento de Engenharia Informatica Universidade de Coimbra Portugal, Portugal

Prof. Zoubir Mammeri, IRIT, Université Paul Sabatier 118 Route de Narbonne F-31062 Toulouse Cedex 9 FRANCE, France

Dr Paul D Polishuk, IGI, Boston, MA, USA

Giuseppe Macchiarella, Politecnico di Milano,Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Italy

Prof. Bernd Steinbach, Bergakademie Freiberg Fakultät für Mathematik und Informatik Institut, Germany

Jan Szmidt, Warsaw University of Technology, Poland

Zenon Chaczko, University of Technology Sydney, Australia

Józef Modelski, Warsaw University of Technology, Poland

Wiesław Woliński, Warsaw University of Technology, Poland

Ryszard Klempous, Wroclaw University of Technology, Poland

Radomir Stanković, University of Niš, Serbia

Javier Poncela, University of Malaga, Spain

Marek Turowski, CFD Research Corporation, United States

Dawid Zydek, NV Energy, United States

Wojciech Szpankowski, Purdue University, United States

Jacek Żurada, University of Louisville, United States

Tadeusz Luba, Warsaw University of Technology, Poland

Stefan Hahn, Warsaw University of Technology, Poland

Gilbert De Mey, Ghent University, Belgium

Svetlana Yanushkevich, University of Calgary, Canada

Viktor Krozer, Technical University of Denmark, Denmark

Adam Morawiec, European Electronic Chips & Systems Design Initiative, France

Herman Rohling, Technical University of Hamburg, Germany

Franco Davoli, University of Genowa, Italy

Michał Mrozowski, Gdańsk University of Technology, Poland

Włodzimierz Janke, Koszalin University of Technology, Poland

Marek Amanowicz, Military University of Technology, Poland

Antoni Rogalski, Military University of Technology, Poland

Andrzej Materka, Technical University of Łódź, Poland

Henry Selvaraj, University of Nevada, United States

 

Contact

Principal Contact
Ryszard S. Romaniuk
Professor
Warsaw University of Technology, Institute of Electronic Systems, room 217, Nowowiejska 15/19, Warsaw 00-665, Poland
Phone: +48222345110
Fax: +48228252300
Email: rrom@ise.pw.edu.pl

Support Contact
Danuta Bartosiewicz
Email: D.Bartosiewicz@ise.pw.edu.pl

 

 

Instructions for authors

Author Guidelines

We recommend the use of LaTeX2e for the preparation of your camera-ready manuscript, together with the corresponding class file.

We do not encourage the use of Microsoft Word, particularly as the layout of the pages (the position of figures and paragraphs or fonts) can change between printouts. If you would like to prepare your manuscript using MS Word please contact Editorial Office.

Please carefully read the information below, and download the relevant files.

To do so, please download JETInfo.pdf

Microsoft Windows or Macintosh LaTeX2e style file:

      Please download IEEEtran.zip

Publication requirement is to prepare no less than 6 pages including references using provided LaTeX2e style. All papers that do not meet this requirement will be rejected before review stage.

 

 

Please submit the following:

  •     All source LaTeX files.
  •     Final PDF file (for reference).
  •     PS/EPS or TIFF files for all figures.
  •     Complete contact information for all authors.
  •     Mailing address, a VAT/CIF/NIF/NIP number (depending on the country) of affiliated company the invoice should be sent.

 

IMORTANT! Before staring submission please prepare a contact information for all co-authors (full names, e-mails and affiliations). A contact information for all authors should be provided during submission process in "Step 2. Entering the Submission's Metadata". Papers submitted without contact information for all co-, authors could be automatically rejected!

This page uses 'cookies'. Learn more