Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 23
items per page: 25 50 75
Sort by:

Abstract

The analysis of cogging torque, torque ripple and total harmonic distortion of a permanent magnet (PM) flux-switching machine having separate excitation stators is presented in this study. Further, the effect of unbalanced magnetic force (UMF) on the rotor of this machine is also investigated. A comparison of the analysed machine having different rotor pole configurations is also given. The analysis shows that the largest cogging torque, torque ripple as well as total harmonic distortion (THD) are obtained in the four-rotor-pole machine while the least of THD and torque ripple effects is seen in the thirteen-rotor-pole machine. Furthermore, the evaluation of the radial magnetic force of the machines having an odd number of rotor poles shows that the investigated machine having a five-rotor-pole number exhibits the highest value of UMF, while the smallest amount of UMF is obtained in an eleven-rotor-pole machine. Similarly, it is observed that the machines having an even number of rotor poles exhibit a negligible amount of UMF compared to the ones of the odd number of rotor poles.
Go to article

Abstract

The permanent magnet synchronous motor (PMSM) driven by an inverter is widely used in the industrial field, but the inverter has a significant impact on the operational stability of the PMSM. The torque ripple of the PMSM is directly affected by the coupling of multiple harmonic voltages in the motor windings. In order to analyze its influence, a water-cooled PMSM with 20 kW 2000 r/min is taken as an example to establish the finite element model of the prototype, and the correctness of the model is verified by experiments. Firstly, based on the finite element method, the electromagnetic field of the PMSM is numerically solved in different operating states, and the performance parameters of the PMSM are obtained. Based on these parameters, the influence of the harmonic voltage amplitude on the torque ripple is studied, and the influence law is obtained. Secondly, combined with the decoupling analysis method, the influence of harmonic voltage coupling on the torque ripple is compared and analyzed, and the variation law of harmonic voltage coupling on the torque ripple is obtained. In addition, the influence of different harmonic voltage coupling on the average torque of the PMSM is studied, and the influence degree of different harmonic voltage amplitude on the torque fluctuation is determined. The conclusion of this paper provides reliable theoretical guidance for improving motor performance.
Go to article

Abstract

A comprehensive comparison of the dynamic and steady state performance characteristics of permanent magnet synchronous motors (PMSM) with interior and surface rotor magnets for line-start operation is presented. The dynamic model equations of the PMSM, with damper windings, are utilized for dynamic studies. Two typical loading scenarios are examined: step and ramp loading. The interior permanent magnet synchronous motor (IPMSM) showed superior asynchronous performance under no load, attaining faster synchronism compared to the surface permanent magnet synchronous motor (SPMSM). With step load of 10 Nm at 2 s the combined effect of the excitation and the reluctance torque forced the IPMSM to pull into synchronism faster than the SPMSM which lacks saliency. The ability of the motors to withstand gradual load increase, in the synchronous mode, was examined using ramp loading starting from zero at 2 s. SPMSM lost synchronism at 12 s under 11 Nm load while the IPMSM sustained synchronism until 41 seconds under 40 Nm load. This clearly suggests that the IPMSM has superior load-withstand capability. The superiority is further buttressed with the steady state torque analysis where airgap torque in IPMSM is enhanced by the reluctance torque within 90E to 180E torque angle.
Go to article

Abstract

The article brightens scientific problem concerning the new ball coupling, which can be used in different branches of engineering. A comparative analysis of the results of research known freewheel. The design features a ball coupling on the basis of which it is easy to create a torque limiter evenly tightening bolted connections of various machines and mechanisms. Prepositional necessary analytical fallow that describe the basic values of the forces off the torque limiter, which have become a benchmark for the development of a new design, which received a patent of Ukraine for utility models. Shows a schematic design of torque limiter, which is based on the known developed ball coupling s full description of its constituent parts and principle of operation. Based design features selected design scheme, which allowed for a mathematical model for the analysis of the power unit. Analytically describes the amount of force that acts on working balls at the beginning of the release of their engagement with the groove of the driven coupling half, i.e. an analytical expression effort off the clutch. On the basis of the formulas A quantitative analysis of the impact force of the spring by the amount of torque limiter for different angles of inclination grooves of the coupling halves. Made confirmation of the classical position that the dependence of torque limiter the wire diameter of the spring is the value is not linear. On the basis of current research findings and made practical recommendations for the implementation of the results of research opportunities in industry engineering.
Go to article

Abstract

This research presents a method for the simulation of the magneto-mechanical system dynamics taking motion and eddy currents into account. The major contribution of this work leans on the coupling the field-motion problem considering windings as the current forced massive conductors, modelling of the rotor motion composed of two conductive materials and the torque calculation employing the special optimal predictor combined with the modified Maxwell stress tensor method. The 3D model of the device is analysed by the time stepping finite element method. Mechanical motion of the rotor is determined by solving the second order motion equation. Both magnetic and mechanical equations are coupled in the iterative solving process. Presented method is verified by solving the TEAM Workshop Problem 30.
Go to article

Abstract

This paper presents a study of control strategies for 5-phase permanent magnet synchronous motors (PMSMs) supplied by a five-leg voltage source inverter. Based on the vectorial decomposition of the multi-phase machine, fictitious machines, magnetically decoupled, allow a more adequate control. In this paper, our study focuses on the vector control of a multi-phase machine using a linear proportional-integral-derivative (PID) current regulator in the cases of sinusoidal and trapezoidal back-electromotive force (EMF) waveforms. In order to determine currents’ references, two strategies are adopted. First one aims to minimize copper losses under constant torque, while the second one targets to increase torque for a given copper losses. These techniques are tested under a variable speed control strategy based on a proportional-integral (PI) regulator and experimentally validated.
Go to article

Abstract

The aim of the studywas to find an effective method of ripple torque compensation for a direct drive with a permanent magnet synchronous motor (PMSM) without time-consuming drive identification. The main objective of the research on the development of a methodology for the proper teaching a neural network was achieved by the use of iterative learning control (ILC), correct estimation of torque and spline interpolation. The paper presents the structure of the drive system and the method of its tuning in order to reduce the torque ripple, which has a significant effect on the uneven speed of the servo drive. The proposed structure of the PMSM in the dq axis is equipped with a neural compensator. The introduced iterative learning control was based on the estimation of the ripple torque and spline interpolation. The structurewas analyzed and verified by simulation and experimental tests. The elaborated structure of the drive system and method of its tuning can be easily used by applying a microprocessor system available now on the market. The proposed control solution can be made without time-consuming drive identification, which can have a great practical advantage. The article presents a new approach to proper neural network training in cooperation with iterative learning for repetitive motion systems without time-consuming identification of the motor.
Go to article

Abstract

Comparison of the electromagnetic performance of a flux-switching permanent magnet (PM) machine having two separate stators as well as different winding topologies is investigated in this paper. Different stator and rotor pole combinations of these machines are also considered. The analysis includes the open-circuit and on-load characteristics of the analyzed machines. It is observed that, the largest fundamental values of electromagnetic torque, for each winding topology, is seen in the 11-rotor-pole and 10-rotor-pole machines having alternate- and all-pole-wound configurations, respectively. Moreover, significant ripple is observed in the waveforms of the even-number rotor pole machines compared to their corresponding odd-number rotor pole counterparts. Overall, the alternate-pole-wound machines essentially have larger torque-density than their equivalent all-pole-wound ones. The investigated machine is also tested for validation.
Go to article

Abstract

This document contains results of research on complex motion common magnetic circuit electromagnetic converter characteristic that allows making independent axial and rotary shaft motion. The converter in addition to linear-rotary mechanism consists of two drive rotors and one common magnetic circuit excitator. Such a solution allows to reduce volume of the machine and makes it easier to use. The paper cites design intent and possible structure of the device. Phenomenon of common magnetic circuit adverse effect on correct operation of device is discussed. The concept of using relative error as a way to evaluate the influence of that phenomenon in the torques is discussed. Waveforms of determined relative errors for all possible cases is presented. Furthermore the concept of average relative error is defined and its use as a quantitative method of assessing the degree of common circuit impact is indicated. Definition of relative error ripple factor is given, and its usage is shown. Winding inductance calculation based on free FEM application is shown and its influence on control strategy and power system.
Go to article

Abstract

This study presents the dependence of the level and harmonic structure of the cogging torque in permanent magnet synchronous motors (PMSM) to imperfections of permanent magnet (PM) dimensions and positions, which can not be avoided in massproduction. Slightly diverse dimensions and misplacements of PMs are introducing asymmetries in magnetic field distribution which cause additional harmonic components. A finite element method (FEM) and Fast Fourier transform (FFT) were used to calculate cogging torque harmonic components with regard to several combinations of PM assembly imperfections. It has been established and proved that unequal PMs cause magnetic asymmetries which give rise to additional cogging torque harmonic components and consequently increase the total cogging torque. It is also shown that in some particular combinations the influence of an individual PM imprecision could compensate with others due to different phase shifts which can result even in the decrease of cogging torque. Considering presented results it is possible to foresee which additional harmonic components will comprise the cogging torque of mass-produced PMSMs due to PM imperfections. In this way the designers are able to predetermine required manufacturing tolerances to keep the level of cogging torque in a admissible level. Simulation results were verified and confirmed by laboratory tests.
Go to article

Abstract

In the paper, the modified (compared to the classical asymmetric half-bridge) converter for a switched reluctance machine with an asymmetric rotor magnetic circuit was analysed. An analysis for two various structures of switched reluctance motors was conducted. The rotor shaping was used to obtain required start-up torque or/and to obtain less electromagnetic torque ripple. The discussed converter gives a possibility to turn a phase off much later while reduced time of a current flows in a negative slope of inductance. The results of the research in the form of waveforms of currents, voltages and electromagnetic torque were presented. Conclusions were formulated concerning the comparison of the characteristics of SRM supplied by the classic converter and by the one supplied by the analysed converter.
Go to article

Abstract

Accurate force and torque calculations are fundamental to being able to predict the operation of an electromechanical device or system. The Maxwell stress tensor and the virtual work principle are the two major theories for force and torque calculation. However, if local distributions of torque are needed to couple to structural and vibration analyses, the conventional Maxwell stress approach cannot provide this easily. A recently developed approach based on sensitivity analysis has the capability to deliver local stress and torque as well as accurate global results. In addition, this approach divides the total torque into different components which are essential to the design of electrical devices. This paper includes several numerical examples of torque calculations of different electrical machines. The results are verified by a commercial software package using the Maxwell stress based force calculation.
Go to article

Abstract

The matrix converter is a new generation of power electronic converters and is an alternative to back-to-back converters in applications that dimensions and weight are important. In this paper, a simple control algorithm for a three-phase asynchronous motor based on a direct torque control technique, which is fed through a three-phase direct matrix converter, is presented. For direct matrix converters, 27 switching modes are possible, which using the predictive control technique and for the different modes of the matrix converter, the motor behavior is estimated at the next sampling interval. Then the objective function is determined and the optimal possible mode is selected. Finally, the best switching mode is applied to the direct matrix converter. In order to evaluate the proposed method, simulation of the system in Matlab/Simulink software environment is performed. The results show the effectiveness of the proposed method.
Go to article

Abstract

An attempt is made in the current research to obtain the fundamental buckling torque and the associated buckled shape of an annular plate. The plate is subjected to a torque on its outer edge. An isotropic homogeneous plate is considered. The governing equations of the plate in polar coordinates are established with the aid of the Mindlin plate theory. Deformations and stresses of the plate prior to buckling are determined using the axisymmetric flatness conditions. Small perturbations are then applied to construct the linearised stability equations which govern the onset of buckling. To solve the highly coupled equations in terms of displacements and rotations, periodic auxiliary functions and the generalised differential quadrature method are applied. The coupled linear algebraic equations are a set of homogeneous equations dealing with the buckling state of the plate subjected to a unique torque. Benchmark results are given in tabular presentations for combinations of free, simply-supported, and clamped types of boundary conditions. It is shown that the critical buckling torque and its associated shape highly depend upon the combination of boundary conditions, radius ratio, and the thickness ratio.
Go to article

Abstract

Maximum Torque Control (MTC) is a new method applied for control of induction motor drives. The drive is controlled by dc voltage supplying a converter in the range below nominal speed and by a field that weakens for a speed range above the nominal speed. As a consequence, the control is quite similar to the control of a classical separately excited dc motor. This control method could be explained as a kind of sim- plification of Direct Torque Control (DTC), because the switching scheme is the same as for the DTC, but the variable responsible for a torque control is constantly set for “torque increase”. This kind of control of induction motor drive is simpler than DTC because torque values need not be estimated. The proposed control method offers very good performance for 3-phase induction motors and requires smaller switching frequency in comparison to DTC and Field Oriented Control (FOC). The application of the con- trol is widely demonstrated for a 3-phase 315 kW, 6 kV motor drive by use of computer simulation.
Go to article

Abstract

This paper presents a predictive torque and flux control algorithm for the synchronous reluctance machine. The algorithm performs a voltage space phasor pre-selection, followed by the computation of the switching instants for the optimum switching space phasors, with the advantages of inherently constant switching frequency and time equidistant implementation on a DSP based system. The criteria used to choose the appropriate voltage space phasor depend on the state of the machine and the deviations of torque and flux at the end of the cycle. The model of the machine has been developed on a d-q frame of coordinates attached to the rotor and takes into account the magnetic saturation in both d-q axes and the cross saturation phenomenon between both axes. Therefore, a very good approximation of this effect is achieved and the performance of the machine is improved. Several simulations and experimental results using a DSP and a commercially available machine show the validity of the proposed control scheme.
Go to article

Abstract

This paper presents novel bi-converter structure to supply the Doubly Fed Induction Machine (DFIM). Two Voltage Source Inverters (VSI) feed the stator and rotor windings. The outputs of two VSI are combined electro-mechanically in the machine and, as a result, novel features can be obtained. For example, for high power drive applications, this configuration use two inverters dimensioned for a half of the DFIM power. A new Dual-Direct Torque Control scheme is developed with flux model of DFIM. Two Switching Tables (ST) linked to VSI are defined for stator and rotor flux vector control. Experimental and simulation results confirm good dynamic behaviour in the four quadrants of the speed-torque plane. Moreover, experimental results show the correct flux vector control behaviour and speed tracking performances.
Go to article

Abstract

Among all control methods for induction motor drives, Direct Torque Control (DTC) seems to be particularly interesting being independent of machine rotor parameters and requiring no speed or position sensors. The DTC scheme is characterized by the absence of PI regulators, coordinate transformations, current regulators and PWM signals generators. In spite of its simplicity, DTC allows a good torque control in steady state and transient operating conditions to be obtained. However, the presence of hysteresis controllers for flux and torque could determine torque and current ripple and variable switching frequency operation for the voltage source inverter. This paper is aimed to analyze DTC principles, the strategies and the problems related to its implementation and the possible improvements.
Go to article

Abstract

The paper proposes a study of molecular interactions using the planetary model of the atomic structure. The description refers to transfer of the interactions by electrons bonded with an atom in a planetary system. In molecules we refer to analysis of electrons that remain unpaired during the formation of chemical compounds. The planetary electronic state of molecular interactions is defined by considering the action arm for interatomic forces. Then the interaction torque is defined. The problem is studied in a collection of atoms forming a nanoparticle and then analysis is carried on in the entire volume of the nanocomposite, which is defined as a set of the nanoparticles in a field of matrix-nanofiller interactions. As a result, new mechanical, magnetic, and optical properties of the nanocomposite arise and are described herein. The atomic-scale phenomena are described by both classical and quantum mechanics and are then transferred to the nanoparticle scale by applying statistical mechanics. The quantum solutions for the optically active electrons form the basis for the optical properties of the nanocomposite using forced gyrobirefringence and Maxwell equations. The results of the theoretical analysis are confirmed by experiment using an electron paramagnetic resonance spectrometer.
Go to article

Abstract

Brushless DC motors are often used as the power sources for modern ship electric propulsion systems. Due to the electromagnetic torque ripple of the motor, the traditional control method reduces the drive performance of the motor under load changes. Aiming at the problem of the torque ripple of the DC brushless motor during a non- commutation period, this paper analysis the reasons for the torque ripple caused by pulse- width modulation (PWM), and proposes a PWM_ON_PWM method to suppress the torque ripple of the DC brushless motor. Based on the mathematical model of a DC brushless motor, this method adopts a double closed-loop control method based on fuzzy control to suppress the torque ripple of the DC brushless motor. The fuzzy control technology is integrated into the parameter tuning process of the proportional–integral–derivative (PID) controller to effectively improve the stability of the motor control system. Under the Matlab/Simulink platform, the response performance of different PID control methods and the torque characteristics of different PWM modulation methods are simulated and compared. The results show that the fuzzy adaptive PID control method has good dynamic response performance. It is verified that the PWM_ON_PWM modulation method can effectively suppress the torque ripple of the motor during non-commutation period, improve the stability of the double closed-loop control system and meet the driving performance of the motor under different load conditions.
Go to article

Abstract

Design of a delta/polygon-connected autotransformer based 36-pulse ac-dc converter is presented in this paper. The 36-pulse topology is obtained via two paralleled eighteen-pulse ac-dc converters each of them consisting of a nine-phase (nine-leg) diode bridge rectifier. For independent operation of paralleled diode-bridge rectifiers, two interphase transformers (IPT) is designed and implemented. A transformer is designed to supply the rectifier. The design procedure of magnetics is in a way such that makes it suitable for retrofit applications where a six-pulse diode bridge rectifier is being utilized. The proposed structure has been implemented and simulated using Matlab/Simulink software under different load conditions. Simulation results confirmed the significant improvement of the power quality indices (consistent with the IEEE-519 standard requirements) at the point of common coupling. Furthermore, near unity power factor is obtained for a wide range of DTCIMD operation. A comparison is made between 6-pulse and proposed converters from view point of power quality indices. Results show that input current total harmonic distortion (THD) is less than 4% for the proposed topology at variable loads.
Go to article

Abstract

In the electromagnetic field simulation of modern servo drives, the computation of higher time and space harmonics is essential to predict torque pulsations, radial forces, ripple torques and cogging torque. Field computation by conformal map ping (CM) techniques is a time-effective method to compute the radial and tangential field components. In the standard CM approach, computational results of cogging torque simulations as well as overload operations observe deviations to nonlinear finite element (FE) simulations due to the neglection of slot leakage and saturation effects. This paper presents an extension of the classical CM. Additional CM parameters are computed from single finite element computations so as to consider both effects listed above in the model over a wide operation range of the electrical drive. The proposed approach is applied to a surface permanent magnet synchronous machine (SM-PMSM), and compared to numerical results obtained by finite element analysis (FEA). An accuracy similar to that of FE simulations is obtained with however the low computation time that is characteristic for analytical models.
Go to article

Abstract

This paper considers a Brushless Direct Current (BLDC) machine prototype with six poles and 36 stator slots including a three phase double-layered distributed winding. Presented modifications of rotor construction are identified in order to achieve the best possible compromise of eddy-current losses and cogging torque characteristics. The permanent magnet (PM) eddy-current loss is relatively low compared with the iron loss; it may cause significant heating of the PMs due to the relatively poor heat dissipation from the rotor and it results in partial irreversible demagnetization. A reduction in both losses is achieved by magnet segmentation mounted on the rotor. Various numbers of magnet segmentation is analysed. The presented work concerns the computation of the no-load iron loss in the stator, rotor yoke and eddy-current loss in the magnets. It is shown that the construction of the rotor with segmented magnets can significantly reduce the PM loss (eddy-current loss). The eddy-current loss in PMs is caused by several machine features; the winding structure and large stator slot openings cause flux den sity variations that induce eddy-currents in the PMs. The effect of these changes on the BLDC motor design is examined in order to improve the machine performance. 3-D finite-element analysis (FEA) is used to investigate the electromagnetic behaviour of the BLDC motor.
Go to article

This page uses 'cookies'. Learn more