Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

The paper presents the results of numerical computations performed for the furnace chamber waterwalls of a supercritical boiler with a steam output of 2400 × 103 kg/h. A model of distributed parameters is proposed for the waterwall operation simulation. It is based on the solution of equations describing the mass, momentum and energy conservation laws. The aim of the calculations was to determine the distribution of enthalpy, mass flow and fluid pressure in tubes. The balance equations can be brought to a form where on the left-hand side space derivatives, and on the right-hand side – time derivatives are obtained. The time derivatives on the right-hand side were replaced with backward difference quotients. This system of ordinary differential equations was solved using the Runge-Kutta method. The calculation also takes account of the variable thermal load of the chamber along its height. This thermal load distribution is known from the calculations of the heat exchange in the combustion chamber. The calculations were carried out with the zone method.
Go to article

Abstract

A new design of decentralized Load Frequency Controller for interconnected thermal non-reheat power systems with AC-DC parallel tie-lines based on Genetic Algorithm (GA) tuned Integral and Proportional (IP) controller is proposed in this paper. A HVDC link is connected in parallel with an existing AC tie-line to stabilize the frequency oscillations of the AC tie-line system. Any optimum controller selected for load frequency control of interconnected power systems should not only stabilize the power system but also reduce the system frequency and tie line power oscillations and settling time of the output responses. In practice Load Frequency Control (LFC) systems use simple Proportional Integral (PI) or Integral (I) controller. The controller parameters are usually tuned based on classical or trial-and-error approaches. But they are incapable of obtaining good dynamic performance for various load change scenarios in multi-area power system. For this reason, in this paper GA tuned IP controller is used. A two area interconnected thermal non-reheat power system is considered to demonstrate the validity of the proposed controller. The simulation results show that the proposed controller provides better dynamic responses with minimal frequency and tie-line power deviations, quick settling time and guarantees closed-loop stability margin.
Go to article

This page uses 'cookies'. Learn more