Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 178
items per page: 25 50 75
Sort by:

Abstract

The thermochemical treatment applied to improve the surface properties of AZ91 consisted in heating the material in contact with AlSi10Mg powder at 445 oC for 30 min. During heat treatment process the powder was held under pressure to facilitate the diffusion of the alloying elements to the substrate and, accordingly, the formation of a modified layer. Two pressures, 1 MPa and 5 MPa, were tested. The resultant layers, containing hard Mg2Si and Mg17Al12 phases, were examined using an optical microscope and a scanning electron microscope equipped with an energy-dispersive X-ray spectrometer (EDS). The experimental data show that the layer microstructure was dependent on the pressure applied. A thicker, three-zone layer (about 200 μm) was obtained at 1 MPa. At the top, there were Mg2Si phase particles distributed over the Mg17Al12 intermetallic phase matrix. The next zone was a eutectic (Mg17Al12 and a solid solution of Al in Mg) with Mg2Si phase particles embedded in it. Finally, the area closest to the AZ91 substrate was a eutectic not including the Mg2Si phase particles. By contrast, the layer produced at a pressure of 5 MPa had lower thickness of approx. 150 μm and a two-zone structure. Mg2Si phase particles were present in both zones. In the upper zone, Mg2Si phase particles were regularly distributed over the Mg17Al12 intermetallic phase matrix. The lower zone, adjacent to the AZ91, was characterized by a higher volume fraction of Mg2Si phase particles distributed over the matrix composed mainly of Mg17Al12. The alloyed layers enriched with Al and Si had much higher hardness than the AZ91 substrate.
Go to article

Abstract

The article presents the results of research on the finishing of M63 Z4 brass by vibratory machining. Brass alloy was used for the research due to the common use of ammunition elements, cartridge case and good cold forming properties on the construction. Until now, the authors have not met with the results of research to determine the impact of abrasive pastes in container processing. It was found that the additive for container abrasive treatment of abrasive paste causes larger mass losses and faster surface smoothing effects. The treatment was carried out in two stages: in the first stage, the workpieces were deburred and then polished. Considerations were given to the impact of mass of workpieces, machining time and its type on mass loss and changes in the geometric structure of the surface. The surface roughness of machining samples was measured with the Talysurf CCI Lite optical profiler. The suggestions for future research may be to carry out tests using abrasive pastes with a larger granulation of abrasive grains, and to carry out tests for longer processing times and to determine the time after which the parameters of SGP change is unnoticeable.
Go to article

Abstract

In the summer of 1979, in South Spitsbergen investigations of the extreme temperatures of the ground surface were carried out. The investigations permitted the determination of the magnitude of the extreme temperatures of the ground surface and their relation to the air temperature. The spatial variability of the extreme temperatures of the ground surface was observed.
Go to article

Abstract

This paper presents an approach based on NURBS (non-uniform rational B-splines) to achieve a seismic response surface (SRS) from a group of points obtained by using an analytical model of RC joints. NURBS based on the genetic algorithm is an important mathematical tool and consists of generalizations of Bezier curves and surfaces and B-splines. Generally, the accuracy of the design process of joints depends on the number of control points that are captured in the results of experimental research on real specimens. The values obtained from the specimens are the best tools to use in seismic analysis, though more expensive when compared to values simulated by SRSs. The SRS proposed in this paper can be applied to obtain surfaces that show site effect results on destructions of beam-column joint, taking into account different site conditions for a specific earthquake. The efficiency of this approach is demonstrated by the retrieval of simulated-versus-analytical results.
Go to article

Abstract

The results of a statistical analysis of the influence of the Hansbreen surface ablation relative to selectedmeteorological parameters (air temperature andsunshine duration) are presentedhere. Over the period1989 –2001 the lowest summer balance on the surface ablation of Hansbreen was recorded in 1994 (–0.56 m water equivalent). Concurrently, both the air temperature (mean seasonal ~2.3 °C) and the sunshine duration (seasonal sum ~278.9 h)were at their lowest. Owing to the relatively high sunshine duration (676.5 h),the highest values were in 1998 (–1.71 m w.e.); likewise,in 2001 (–1.84 m w.e.) when a high air temperature (mean of 3.6 °C) occurred. The statistical models erected on the basis of these data allow us to estimate fairly reliably the seasonal ablation of Hansbreen. The basis of these is the reasonably reliable relationship determinable between the seasonal sum of PDD (positive degree days) and the ablation intensity changes in respect of altitude above sea level. Sunshine duration is regarded here as being of very little significance in terms of increasing the accuracy of the models. The errors inherent in this models varies from 28% to as little as 7%. Shown models may eventually find application as a method of calculating the amount of water resulting from the decay of tidewater glaciers.
Go to article

Abstract

Spitsbergen glaciers react rapidly to changes in the polar environment, which is expressed in differences in extent of their fronts and surface geometry. The Scott Glacier, which is situated in the NW part of Wedel Jarlsberg Land, is an example of the glacier that has undergone almost continuous recession since the Little Ice Age, interrupted by surges. The variations in recession are characterised based on multiannual data with particularly consideration of the period 1990–2005 and the season 2005/2006. Acceleration of front recession and lowering the surface was found only within the tongue up to a height of about 220 m a.s.l. Whereas, in the area situated in the zone of rock steps and above in the ablation zone, the change of glacier surface ablation (Dh) has been recorded compared to the mean annual recession for the period 1990–2005. Moreover, for the upper firn field, the positive surface ablation (DhS7 = +0.19 m) was observed. As the result of progressive reduction of the Scott Glacier mass, with the participation of other factors (bedrock relief among others), new surfaces of roche moutonnée are uncovering particularly in the tongue zone.
Go to article

Abstract

Underground mining extraction causes the displacement and changes of stress fields in the surrounding rock mass. The determination of the changes is extremely important when the mining activity takes place in the proximity of post-flotation tailing ponds, which may affect the stability of the tailing dams. The deterministic modeling based on principles of continuum mechanics with the use of numerical methods, e.g. finite element method (FEM) should be used in all problems of predicting rock mass displacements and changes of stress field, particularly in cases of complex geology and complex mining methods. The accuracy of FEM solutions depends mainly on the quality of geomechanical parameters of the geological strata. The parameters, e.g. young modulus of elasticity, may require verification through a comparison with measured surface deformations using geodetic methods. This paper presents application of FEM in predicting effects of underground mining on the surface displacements in the area of the KGHM safety pillar of the tailing pond of the OUOW Żelazny Most. The area has been affected by room and pillar mining with roof bending in the years 2008-2016 and will be further exposed to room-and-pillar extraction with hydraulic filling in the years 2017–2019.
Go to article

Abstract

Knowledge of the temperature distribution in subsurface layers of the ground is important in the design, modelling and exploitation of ground heat exchangers. In this work a mathematical model of heat transfer in the ground is presented. The model is based on the solution of the equation of transient heat transfer in a semi-infinite medium. In the boundary condition on the surface of the ground radiation fluxes (short- and long-wave), convective heat flux and evaporative heat flux are taken into account. Based on the developed model, calculations were carried out to determine the impact of climatic conditions and the physical properties of the ground on the parameters of the Carslaw-Jeager equation. Example results of calculated yearly courses of the daily average temperature of the surface of the ground and the amount of particular heat fluxes on the ground surface are presented. The compatibility of ground temperature measurements at different depths with the results obtained from the Carslaw–Jaeger equation is evaluated. It was found that the temperature distribution in the ground and its variability in time can be calculated with good accuracy.
Go to article

Abstract

Bacteria from the Simkaniaceae family are intracellular parasites belonging to the Chlamydiales order, detected in surface waters, drinking water, chlorine water, and in wastewater. Its main representative, Simkania negevensis, is pathogenic to humans and animals, especially fishes, as it principally causes respiratory tract diseases. Bacteria from this family are also capable of surviving and existing in free-living amoebas, omnipresent in the natural environment, which makes them an additional risk for human and animal health. The aim of the present study was to search for representatives of this family in freshwaters from the Odra River and two municipal lakes (Rusałka and Goplana). Out of 100 water samples analysed, the sequence of bacteria of Simkaniaceae family was found just in 1 percent, because phylogenetic analysis revealed that the obtained OdraWCh30 sequence shows 93% similarity to Simkania negevensis strain Z as well as 87% similarity to Candidatus Syngnamydia salmonis isolate Ho-2008 and Candidatus Syngnamydia salmonis isolate VS10102006 and 84-85% similarity to endosymbiont of Xenoturbella westbladi, Simkaniaceae bacterium clone SM081012-5s and Candidatus Syngnamydia venezia strain Pi3-2. This is the first case of detecting sequence of bacteria of Simkaniaceae family in the aquatic environment in Poland.
Go to article

Abstract

The paper presents an experimental investigation of a silicone based heat exchanger, with passive heat transfer intensification by means of surface enhancement. The main objective of this paper was to experimentally investigate the performance of a heat exchanger module with the enhanced surface. Heat transfer in the test section has been examined and described with precise measurements of thermal and flow conditions. Reported tests were conducted under steady-state conditions for single-phase liquid cooling. Proposed surface modification increases heat flux by over 60%. Gathered data presented, along with analytical solutions and numerical simulation allow the rational design of heat transfer devices.
Go to article

Abstract

The aim of this publication is to design a procedure for the synthesis of an IDT (interdigital transducer) with diluted electrodes. The paper deals with the surface acoustic waves (SAW) and the theory of synthesis of the asymmetrical delay line with the interdigital transducer with diluted electrodes. The authors developed a theory, design, and implementation of the proposed design. They also measured signals. The authors analysed acoustoelectronic components with SAW: PLF 13, PLR 40, delay line with PAV 44 PLO. The presented applications have a potential practical use.
Go to article

Abstract

This paper presents a comprehensive methodology for measuring and characterizing the surface topographies on machined steel parts produced by precision machining operations. The performed case studies concern a wide spectrum of topographic features of surfaces with different geometrical structures but the same values of the arithmetic mean height Sa. The tested machining operations included hard turning operations performed with CBN tools, grinding operations with Al2O3 ceramic and CBN wheels and superfinish using ceramic stones. As a result, several characteristic surface textures with the Sa roughness parameter value of about 0.2 μm were thoroughly characterized and compared regarding their potential functional capabilities. Apart from the standard 2D and 3D roughness parameters, the fractal, motif and frequency parameters were taken in the consideration.
Go to article

Abstract

In a dynamic machining process, distortion in surface irregularity is a very complex phenomenon. Surface irregularities form a periodic representation of the tool profile with various kinds of disturbance in a broad range of changes in the height and length of the profile. To discern these irregularity disturbances, interactions of the tool in the form of changes perpendicular and parallel relative to the workpiece were analyzed and simulated. The individual kinds of displacement of the tool relative to the workpiece introduce distortions in the changes of height and length. These changes are weakly represented in standard height and length irregularity parameters and their discernment has been found through amplitude-frequency functions.
Go to article

Abstract

The use of surface analysis to investigate brake elements shows how a pair in contact works and wears out during regular operation. The main purpose of this paper is to describe the asperities from initial state to a moment when further use of the drum and shoe is not possible. Between exchange of vital brake elements a truck with total mass exceeding 3.5 tons can cover as many as 300 000 kilometres. Use of brakes during the first 1000 kilometres after maintenance should be rather gentle with possibly intensive use of engine brake installed in the truck itself, because if this rule is not adhered to it may lead to a significant decrease of the braking force and on the surface of the pair in contact a layer will appear that is not possible to wear off and that will make it impossible to stop a truck using brakes. In that condition the shoe should be immediately replaced and the drum should be remachined (by turning) to a repair dimension. In the paper the condition and analysis of a surface after different course of exploitation was presented.
Go to article

Abstract

A method of manufacturing hydrogel coatings designed to increase the hydrophilicity of polyurethanes (PU) is presented. Coatings were obtained from polyvinylpyrrolidone (PVP) by free radical polymerisation. The authors proposed a mechanism of a two-step grafting - crosslinking process and investigated the influence of reagent concentration on the coating’s physical properties - hydrogel ratio (HG) and equilibrium swelling ratio (ESR). A surface analysis of freeze-dried coatings using scanning electron microscopy (SEM) showed a highly porous structure. The presented technology can be used to produce biocompatible surfaces with limited protein and cell adhesive properties and can be applied in fabrication of number of biomedical devices, e.g. catheters, vascular grafts and heart prosthesis.
Go to article

Abstract

Combining surface measurement data from individual measurements of surface fragments is an issue that has been recognized for flat surfaces. The connection takes place on the principle of making ‘overlap’ measurements according to a specific measurement strategy, and then the algorithm synthesizes the measurement data for the common part (data fusion). This paper presents a method of combining partial data into one larger set using image processing methods. The purpose of the analysis is to combine surface data of a more complex shape in terms of surface roughness and waviness. A successful attempt was made to combine surface measurement data located on a cylindrical surface – convex surface. A rotated table was designed and used for surface data acquisition. The datasets were acquired with the use of CCI 6000 (366 μm – 366 μm) with the assumed overlapping of at least 20%. The measurement datasets were first pre-processed: filling in non-measured points, levelling and form re- moving were applied. For such processed datasets, the common part was identified (data registration) and then the data fusion was performed. An example of stitching the surface datasets shows usefulness of the presented methodology.
Go to article

Abstract

The paper presents differences between technical states and technical operation states of haul trucks in the technical operation process. The specification and analysis of operational parameters of technological vehicles used in surface mining is possible only due to more and more frequently used diagnostic – telemetric systems. While a detailed analysis of machines operation data can result in the more effective management of mining plant operations and the mining process itself. The determination of operational state indices and their individual components allows preventive actions to be commenced, resulting in improving the work organization of the entire mine machinery system. Moreover, the future technical state of machines operated in surface mining is strictly related to the current state and also depends on the events that occurred in the extraction system. A set of parameter values of individual state characteristics, which allow the haul trucks technical and operational state to be characterized, is a direct effect of a telemetric – diagnostic system operation.
Go to article

Abstract

The paper presents a new geotechnical solution indicating a possibility of effective building structures protection. The presented solutions enable minimization of negative effects of underground mining operations. Results of numerical modelling have been presented for an example of design of preventive ditches reducing the influence of mining operations on the ground surface. To minimize the mining damage or to reduce its reach it is reasonable to look for technical solutions, which would enable effective protection of building structures. So far authors concentrated primarily on the development of building structure protection methods to minimize the damage caused by the underground mining. The application of geotechnical methods, which could protect building structures against the mining damage, was not considered so far in scientific papers. It should be noticed that relatively few publications are directly related to those issues and there are no practical examples of effective geotechnical protection. This paper presents a geotechnical solution indicating a possibility of effective protection of building structures. The presented solutions enable minimization of negative effects of underground mining operations. Results of numerical modelling have been presented for an example of design of preventive ditches reducing the influence of mining operations on the ground surface. The calculations were carried out in the Abaqus software, based on the finite element method.
Go to article

Abstract

An emerging ultrasonic technology aims to control high-pressure industrial processes that use liquids at pressures up to 800 MPa. To control these processes it is necessary to know precisely physicochemical properties of the processed liquid (e.g., Camelina sativa oil) in the high-pressure range. In recent years, Camelina sativa oil gained a significant interest in food and biofuel industries. Unfortunately, only a very few data characterizing the high-pressure behavior of Camelina sativa oil is available. The aim of this paper is to investigate high pressure physicochemical properties of liquids on the example of Camelina sativa oil, using efficient ultrasonic techniques, i.e., speed of sound measurements supported by parallel measurements of density. It is worth noting that conventional low-pressure methods of measuring physicochemical properties of liquids fail at high pressures. The time of flight (TOF) between the two selected ultrasonic impulses was evaluated with a cross-correlation method. TOF measurements enabled for determination of the speed of sound with very high precision (of the order of picoseconds). Ultrasonic velocity and density measurements were performed for pressures 0.1–660 MPa, and temperatures 3–30XC. Isotherms of acoustic impedance Za, surface tension #27; and thermal conductivity k were subsequently evaluated. These physicochemical parameters of Camelina sativa oil are mainly influenced by changes in the pressure p, i.e., they increase about two times when the pressure increases from atmospheric pressure (0.1 MPa) to 660 MPa at 30XC. The results obtained in this study are novel and can be applied in food, and chemical industries.
Go to article

Abstract

This article proposes to use abrasive waterjet cutting (AWJ) for deflashing, deburring and similar finishing operations in casting. The basic requirements concerning the dimensional accuracy and surface texture of cast components are not met if visible surface flaws are detected. The experiments focused on the removal of external flash from elements made of EN-GJL-150 cast iron. The method employed for finishing was abrasive waterjet cutting. The tests were carried out using an APW 2010BB waterjet cutting machine. The form profiles before and after flash removal were determined with a Taylor Hobson PGI 1200 contact profiler. A Nikon AZ100 optical microscope was applied to observe and measure the changes in the flash height and width. The casting surface after finishing was smooth, without characteristic sharp, rough edges that occur in the cutting of objects with a considerable thickness. It should be emphasized that this method does not replace precise cutting operations. Yet, it can be successfully used to finish castings for which lower surface quality is required. An undoubted advantage of waterjet cutting is no effect of high temperature as is the case with plasma, laser or conventional cutting. This process is also easy to automate; one tool is needed to perform different finishing operations in order to obtain the desired dimensions, both internal and external.
Go to article

Abstract

Ablation casting is a technological process in which the increased cooling rate causes microstructure refinement, resulting in improved mechanical properties of the final product. This technology is particularly suitable for the manufacture of castings with intricate shapes and thin walls. Currently, the ablation casting process is not used in the Polish industry. This article presents the results of strength tests carried out on moulding sands based on hydrated sodium silicate hardened in the Floster S technology, intended for ablation casting of the AlSi7Mg (AK7) aluminium alloy. When testing the bending and tensile strengths of sands, parameters such as binder and hardener content were taken into account. The sand mixtures were tested after 24h hardening at room temperature. The next stage of the study describes the course of the ablation casting process, starting with the manufacture of foundry mould from the selected moulding mixture and ending in tests carried out on the ready casting to check the surface quality, structure and mechanical properties. The results were compared with the parallel results obtained on a casting gravity poured into the sand mould and solidifying in a traditional way at ambient temperature.
Go to article

Abstract

The irregularity profiles of steel samples after vapour blasting were measured. A correlation analysis of profile parameters was then carried out. As the result, the following parameters were selected: Pq, Pt, PDq, Pp/Pt and Pku. Surface profiles after vapour blasting were modeled. The modeled surfaces were correctly matched to measured surfaces in 78% of all analyzed cases. The vapour blasting experiment was then carried out using an orthogonal selective research plan. The distance between the nozzle and sample d and the pressure of feed system p were input parameters; selected surface texture coefficients were output parameters. As the result of the experiment, regression equations connecting vapour blasting process parameters p and d with selected profile parameters were obtained. Finally, 2D profiles of steel samples were forecasted for various values of vapour blasting parameters. Proper matching accuracy of modeled to measured profiles was assured in 75% of analyzed cases.
Go to article

Abstract

This study summarises the research efforts undertaken in iron foundry plants in which the process are mostly automated and mechanised. The research program was limited in scope, focusing on causes of surface defects in castings products that are attributable to the bentonite-containing sand and the mould system. One of the potential roots of surface defects is heterogeneity of sand grains, containing lumped ball-shaped grains and irregular pellets with a layered-structure. The moisture contents of those lumped grains is different than the moisture level required in the process, besides these grains may contain various elements and metallic compounds which, when cast into moulds, may react with molten metals in an uncontrolled manner. As a result, surface defects are produced, such as surface blowholes, burst penetration, sand holes, slag inclusions, pinhole porosity. This study investigated the efficiency of key sand preparation and moulding machines and installations integrated into the casting process line. The efficiency of machines and installations is defined in terms of quality parameters of sand mix and moulds, which are associated with the emergence of surface defects on castings.
Go to article

Abstract

This study proposes a surface profile and roughness measurement system for a fibre-optic interconnect based on optical interferometry. On the principle of Fizeau interferometer, an interference fringe is formed on the fibre end-face of the fibre-optic interconnect, and the fringe pattern is analysed using the Fast Fourier transform method to reconstruct the surface profile. However, as the obtained surface profile contains some amount of tilt, a rule for estimating this tilt value is developed in this paper. The actual fibre end-face surface profile is obtained by subtracting the estimated tilt amount from the surface profile, as calculated by the Fast Fourier transform method, and the corresponding surface roughness can be determined. The proposed system is characterized by non-contact measurement, and the sample is not coated with a reflector during measurement. According to the experimental results, the difference between the roughness measurement result of an Atomic Force Microscope (AFM) and the measurement result of this system is less than 3 nm.
Go to article

Abstract

Measurements of dynamic surface tension were carried out in aqueous systems (water or 0.1 mM Triton X-100) comprising nanoparticles formed from chemically modified polyaldehyde dextran (PAD). The nanostructures, considered as potential drug carriers in aerosol therapy, were obtained from biocompatible polysaccharides by successive oxidation and reactive coiling in an aqueous solution. The dynamic surface tension of the samples was determined by the maximum bubble pressure (MBP) method and by the axisymmetric drop shape analysis (ADSA). Experiments with harmonic area perturbations were also carried out in order to determine surface dilatational viscoelasticity. PAD showed a remarkable surface activity. Ward-Tordai equation was used to determine the equilibrium surface tension and diffusion coefficient of PAD nanoparticles (D = 2.3×10-6 m2/s). In a mixture with Triton X-100, PAD particles showed co-adsorption and synergic effect in surface tension reduction at short times (below 10 s). Tested nanoparticles had impact on surface rheology in a mixed system with nonionic surfactant, suggesting their possible interactions with the lung surfactant system after inhalation. This preliminary investigation sets the methodological approach for further research related to the influence of inhaled PAD nanoparticles on the lung surfactant and mass transfer processes in the respiratory system.
Go to article

This page uses 'cookies'. Learn more