Search results

Filters

  • Journals
  • Authors
  • Contributor
  • Keywords
  • Date
  • Type

Search results

Number of results: 50
items per page: 25 50 75
Sort by:

Abstract

We talk to Dr. Emilia Rejmak-Kozicka from the PAS Institute of Experimental Biology about how our bodies respond to chronic stress.
Go to article

Abstract

O b j e c t i v e s: The aim of study was to investigate the association between anxiety, depression, stress and determinants of quality of life among Iranian students. M e t h o d s: The questionnaires were completed by 275 students. The random sampling was conducted in two phases, the stratified sampling which some classes were selected among different classes of faculty of health and at the second phase, in each class the number of students who had the requirements to enter in the study were selected randomly. the logistic regression to find out the association between demographic characteristics with the quality of life was run and according to the normality status of the distribution of data the parametric or non-parametric tests were used. R e s u l t s: In the univariable model, the students that were living in their own homes had the odds of 2.18 times more than the others to have a higher quality of life level (95% CI: 1.07–4.45). In the multi variable model the anxiety and stress were significantly related to the quality of life and for increasing each 1 unit in the amount of anxiety and stress the odds of a better quality of life decreases 0.19 and 0.03 respectively. Even after adjusting for other covariates – in the multivariable model – both anxiety and stress were associated with the quality of life. C o n c l u s i o n: It is useful for the universities to understand different aspects of the students’ lives which are under the influence of stress, anxiety and depression, and also determining the resources from which they are originated.
Go to article

Abstract

An algorithm of determination of mechanical stresses and deformations of the magnetic circuit shape, caused by forces of magnetic origin, is presented in this paper. The mechanical stresses cause changes of magnetizing characteristics of the magnetic circuit. The mutual coupling of magnetic and mechanical fields was taken into account in the algorithm worked out. A computational experiment showed that it was possible to include the interaction of both fields into one numerical model. The elaborated algorithm, taking into account the impact of mechanical stresses on magnetic parameters of construction materials, can be used in both the 2D and the 3D type field-model.
Go to article

Abstract

Plants are continuously exposed to various environmental stresses and they respond to them in different ways. Ambient temperature is among the most important environmental cues that directly influence plant growth and yield. Research in recent years has revealed that epigenetic mechanisms play a key role in plants' response to temperature stress. Changes in gene expression evoked by stress signals follow post-translational histone modifications, DNA methylation, histone variant incorporation, and the action of chromatin remodeling factors and Polycomb group proteins. The majority of epigenetic modifications induced by temperature stress are reversible in nature; thus, chromatin returns to its previous state after the stress has passed. Some modifications seem stable, however, due presumably to so-called stress memory. Epigenetic modifications can be inherited through mitosis and meiosis. By dint of epigenetic memory, plants can more efficiently respond to future stressful conditions, thereby increasing their potential for environmental adaptation. Recognition of the epigenetic mechanisms that take part in plants' response to changes of ambient temperature will increase our understanding of adaptations to stress conditions.
Go to article

Abstract

Heavy metal pollution of soil is a significant environmental problem and has a negative impact on human health and agriculture. Phytoremediation can be an alternative environmental treatment technology, using the natural ability of plants to take up and accumulate pollutants or transform them. Proper development of plants in contaminated areas (e.g. heavy metals) requires them to generate the appropriate protective mechanisms against the toxic effects of these pollutants. This paper presents an overview of the physiological mechanisms of stress avoidance and tolerance by plants used in phytoremediation of heavy metals.
Go to article

Abstract

Many Antarctic marine benthic invertebrates are adapted to specific environ− mental conditions (e.g. low stable temperatures, high salinity and oxygen content). Changes caused by global climatic shifts can be expected to have significant impact on their physiol− ogy and distribution. Odontaster validus, an ubiquitous, omnivorous sea star is one of the “keystone species” in the Antarctic benthic communities. Laboratory experiments were car− ried out to study the effect of temperature rise (from 0 to 5#2;C) on some vital biological func− tions that sea stars must perform in order to survive in their environment. Parameters such as behavioural reaction of sea stars to food and food odour, locomotory performance and abil− ity to right were measured. Temperature increase significantly impaired the ability of O. validus to perform these functions (e.g. lowering the number of sea stars able to right, in− creasing time−to−right, reducing locomotory activity, weakening chemosensory reaction to food and food odour). At temperatures of 4 and 5#2;C a loss of motor coordination was ob− served, although at all tested temperatures up to 5#2;C there were single individuals perform− ing successfully.
Go to article

Abstract

Endopolyploidy is a condition of a cell containing reduplicated genetic material in its nucleus. Cells with the nuclei of different ploidy levels are often present within a single polysomatic organism. Endoreduplication is thus a modified cell cycle that omits cytokinesis and leads to chromatin replication in the endopolyploid cells. This study aimed to research the effect of salinity on endopolyploidy of Trifolium pratense and T. repens. Both species are important pasture legumes and belong to the genus Fabaceae with the well documented endopolyploidy occurence. Endopolyploidy levels in the seedlings treated with 0, 30, 60, 90 and 120 mM NaCl were investigated by flow cytometry. The seedling organs were evaluated during three ontogeny stages. The cytometric data plotted on a histogram showed the presence of 2C-16C nuclei in T. pratense and 2C-8C in T. repens. The hypothesis that salinity induces additional endocycles was not confirmed. Our results show that the distribution of nuclei among ploidy levels does not differ markedly between the treatment groups and the control ones. Additionally, only minor changes were observed among the endoreduplication indexes (EI) of plant organs after exposure to various salt concentrations. Endopolyploidy patterns within the salt-treated seedlings during ontogeny are similar to the controls. We suggest that endopolyploidy in Trifolium species is a conserved genetic trait, rather than an adaptation to salinity stress. The analyses of the roots of T'. pratense at stage III show that with the increased concentrations of NaCl the length of roots decreased, but no evident changes in endopolyploidy occured.
Go to article

Abstract

Purpose: The aim of this paper is to discuss exposure to stress and the incidence of occupational burnout among oncology nurses. Methods: To study the discussed issue, we analyzed six full-text research papers which were searchable by EBSCO and met all required criteria (words included in the abstract, English publication, size of the study group). Results: Exposure to chronic occupational stress may lead to developing burnout syndrome. Social service professionals are especially affected as they are expected to be emotionally engaged in their jobs, which particularly applies to such health care professionals as nurses, psychologists, police officers and social workers. Because of occupational burnout work efficiency may deteriorate. Oncology nurses are among the most affected nurse groups in terms of exposure to the risk of burnout. Conclusions: Oncology nurses as well as other oncology workers exhibit an increased risk and a higher grade of burnout. Psychological training sessions are available which effectively prevent and alleviate the effects of burnout.
Go to article

Abstract

The paper concerns simulation of fully developed and axially-symmetrical turbulent flow of coarse-dispersive slurry if all solid particles have similar size and shape with particles diameter from 1 mm to 5 mm, solid density from 1045 kg/m^3 to 3000 kg/m^3, and solid concentration by volume from 20% to 40%. The author examines the influence of particle diameter on additional shear stress due to the ‘particles-wall’ interactions for moderate and high solid concentration. The mathematical model was developed using Bagnold's concept, [26] and assumes that the total wall shear stresses are equal to the sum of ‘liquid-wall’ and ‘particles-wall’ shear stresses. The mathematical model was successfully verified with own measurements of frictional head loss in vertical coarse - dispersive slurry flow, named: ‘sand-water’, ‘polystyrene-water’ and ‘pvc-water’, [10], [26]. The mathematical model can predict ‘particles-wall’ shear stress, pressure drop and friction factor for coarse-dispersive turbulent slurry flow in a pipe, [10]. The aim of the paper is to present qualitative and quantitative dependence of solid particle diameter, solid particle density, solid concentration, and Reynolds number for carrier liquid phase on the ‘particles-wall’ shear stress. It is demonstrated that the solid particle diameter plays crucial role in its dependence on the ‘particles-wall’ shear stress. It was proved that in particular flow conditions the ‘particles-wall’ shear stress is much higher compared to the carrier liquid wall shear stress.
Go to article

Abstract

This paper presents the current study of the distribution of stresses for four-point contact wire race ball bearing. The main aim of this article is to define the most important geometrical rules in a wire-race bearing. The results for bearings of different geometrical parameters are presented. In the study, one also estimates the distribution of internal pressure in particular bearing elements.
Go to article

Abstract

The brake linkage of a hoisting machine is a very important component determining the safety of the hoisting machine’s entire braking system. It is subject to weekly inspections. However, an efficiency test of brake performance is carried out every 6 months. Once every 3 years, a test must be carried out by an appraiser who pays particular attention to the executive and control components of the brakes as well as the strain - brake system and brake release components. The legal provisions regulating the testing of braking system linkages are not precise. So far, the control has been based on random measurement of strains using electrical resistance strain gauges stuck to the surface of the linkage. A new method for measuring the strains of the linkage has been proposed in the work. It is based on fibre optic strain sensors with Fibre Bragg Gratings (FBG). They are mounted using specially designed and tested holders for mounting on the brake linkage. They provide quick assembly and the measurement of strain in the direction parallel to the axis of the linkage. The structure of the holder also allows for the measurement in 4 positions turned every 90 relative to one another. Such a measurement enables a comprehensive analysis of strains and stresses in the brake linkage. In the work, it was shown that there is a complex state of strain and stress in the brake linkage. The previous procedures for linkage testing are inadequate in relation to this condition. An experimental and numerical method was proposed to assess the state of linkage stress. It should constitute the basis for the decision of the appraiser to allow the linkage for further use. The method proposed in the work also allows for continuous measurements of linkage strains as well as dynamic braking tests.
Go to article

Abstract

The main aim of the study was to determine the goodness of fit between the relaxation function described with a rheological model and the real (experimental) relaxation curves obtained for digital materials fabricated with a Connex 350 printer using the PolyJet additive manufacturing technology. The study involved estimating the uncertainty of approximation of the parameters of the theoretical relaxation curve. The knowledge of digital materials is not yet sufficient; their properties are not so well-known as those of metallic alloys or plastics used as structural materials. Intensive research is thus required to find out more about their behavior in various conditions. From the calculation results, i.e. the uncertainty of approximation of the relaxation function parameters, it is evident that the experimental curves coincide with the curves obtained by means of the solid model when the approximation uncertainty is taken into account. This suggests that the assumed solid model is well-suited to describe a real material.
Go to article

Abstract

Mechanical properties of the pipeline samples that had been cut in annular and axial directions were investigated. The methodology of modeling and calculation of the real stress-strain state was described. The stable state during in the deformation process was defined. The results of the experimental researches were used as a test variant during examination of pipe strength.
Go to article

Abstract

Biological control of plant diseases is strongly emerging as an effective alternative to the use of chemical pesticides and fungicides. Stress tolerance is an important attribute in the selection of bacteria for the development of microbial inoculants. Fourteen salt-tolerant bacteria showing different morphological features isolated from the rhizosphere of maize were evaluated for different plant growth-promoting activities. All isolates showed auxin production ranging from 5 to 24 μg ⋅ ml–1 after 48 h incubation in tryptophan supplemented media. Phosphate solubilization ranged from 15 to 419 μg ⋅ ml–1. 1-aminocycloproprane- 1-carboxylate (ACC) deaminase activity was shown by 6 isolates, ammonia production by 9 isolates, siderophore production by 8 isolates while HCN production by 4 isolates. Four bacterial isolates with all plant growth-promoting properties also showed strong antagonistic activities against Fusarium oxysporum, F. verticillioides, Curvularia lunata and Alternaria alternata and abiotic stress tolerance against salinity, temperature, pH and calcium salts. Two selected bacterial isolates significantly enhanced the growth of pea and maize test plants under greenhouse conditions. The bacterial isolate M1B2, which showed the highest growth promotion of test plants, was identified as Bacillus sp. based on phenotypic and 16S rDNA gene sequencing. The results indicated that Bacillus sp. M1B2 is a potential candidate for the development of microbial inoculants in stressful environments.
Go to article

Abstract

This paper concerns the possibility of use the Jiles-Atherton extended model to describe the magnetic characteristics of construction steel St3 under mechanical stress. Results of the modelling utilizing extended Jiles-Atherton model are consistent with results of experimental measurements for magnetic hysteresis loops B(H). Material stress state determination by using non-destructive, magnetic properties based on testing techniques is an especially important problem.
Go to article

Abstract

This study presents results of stress rupture test of MAR-M-509 cobalt alloy samples, as-cast and after surface refining with a concentrated stream of heat. Tests were conducted on samples of MAR-M-509 alloy castings, obtained using the lost-wax method. Casting structure refining was performed with the GTAW method in argon atmosphere, using the current I = 200 A and electrical arc scanning velocity vs = 100, 150, 200 and 250 mm/min. The effect of rapid resolidification of the MAR-M-509 alloy on the microstructure was examined and significant improvement in stress rupture test was observed.
Go to article

Abstract

Oxidative stress (OxS) has been implicated in the pathogenesis of Crohn’s disease (CD). The aim of this study was to examine whether nonenzymatic antioxidants are associated with active CD, by using the FRAP and GSH assay in plasma. Additionally, we measured bilirubin and albumin levels as two individual components of the plasma antioxidant system. A total of 55 patients with established CD, 30 with active CD and 25 with inactive disease, and 25 healthy individuals were prospectively enrolled in this study. We evaluated CD activity index, BMI and blood morphology, platelet count, serum CRP level, and bochemical parameters of OxS: ferric reducing ability of plasma (FRAP), reduced glutathione (GSH) in plasma and bilirubin and albumin levels in serum. Plasma FRAP and GSH concentrations were decreased in both CD groups compared to controls and negatively correlated with CDAI values (FRAP: r = –0.572, p = 0.003; GSH: r = –0.761, p = 0.001), CRP and platelet count. Bilirubin and albumin levels were lower in the serum of active CD patients than inactive CD patients and controls and negatively correlated with the CD activity index (r = –0328, p = 0.036, r = –0.518, p = 0.002) and CRP (r = –0.433, p = 0.002). The decreased FRAP and GSH levels in plasma and bilirubin and albumin levels in serum of patients with active CD compared to inactive CD and controls underlines the importance of OxS in the pathophysiology and activity of CD.
Go to article

Abstract

In the Carboniferous rock mass of the Upper Silesian Coal Basin, large changes in the geomechanical conditions often occur over relatively short distances. These conditions relate to rock properties that are primarily responsible for the occurrence of geodynamic phenomena in the rock mass. The main factor influencing the manifestation of these phenomena is tectonic stress developed during Variscan and subsequent Alpine orogenesis. This stress contributed to creating tectonic structures in the Carboniferous formations and influenced the properties of the rocks themselves and the rock mass they form. As a result of the action of the stresses, compaction zones (main stresses were compressive) were formed, along with zones in which one of the main stresses was tensile. For the compaction zones in the Carboniferous rocks, the following geomechanical parameters have been calculated: uniaxial compressive strength, Young’s modulus and post-critical modulus. The local stress field was determined according to the focal mechanism in selected areas (Main and Bytom troughs) to characterize changes in geomechanical properties of the rocks that are responsible for high-energy tremors (E ≥ 106 J, ML ≥ 2.2).
Go to article

Abstract

Plants adapt to extremely low temperatures in polar regions by maximizing their photosynthetic efficiency and accumulating cryoprotective and osmoprotective compounds. Flowering plants of the family Poaceae growing in the Arctic and in the Antarctic were investigated. Their responses to cold stress were analyzed under laboratory conditions. Samples were collected after 24 h and 48 h of cold treatment. Quantitative and qualitative changes of sugars are found among different species, but they can differ within a genus of the family Poaceae. The values of the investigated parameters in Poa annua differed considerably depending to the biogeographic origin of plants. At the beginning of the experiment, Antarctic plants were acclimatized in greenhouse characterized by significantly higher content of sugars, including storage reserves, sucrose and starch, but lower total protein content. After 24 h of exposure to cold stress, much smaller changes in the examined parameters were noted in Antarctic plants than in locally grown specimens. Total sugar content and sucrose, starch and glucose levels were nearly constant in P. annua, but they varied significantly. Those changes are responsible for the high adaptability of P. annua to survive and develop in highly unsupportive environments and colonize new regions.
Go to article

Abstract

The work presents a computer simulation realized with the ADINA program concerning nanoindendation test. A shape of nanoindenter was proposed to be similar to the real surgical tools. The theoretical model was used to predict phenomena which would appear in practice. The contribution of the TiN coating thickness to the implant rigid properties was simulated. Three types of extortion conditions could be considered, i.e., short contact with surgery tool (i); long continuous contact with natural tissue (ii); long cyclic contact with natural tissue (iii). In the first part of the work, the authors focused on the first type of extortion (i). The second part of the work is dedicated to the calculations of temperature impact to layer behaviour. Two layer thicknesses are considered i.e., 250 nm and 50 nm. The examined coatings find serious practical applications as a blood-contacting material in medicine. The coatings were subjected to transmission electron microscopy investigations. Columnar mechanism of film growth controlled by kinetic process is stated to operate for the considered range of layer thickness. Plasma temperature is observed to influence the substrate behaviour. Examinations of thinner layers, i.e. under 100nm, revealed higher degree of smoothness and uniformity, which could be related to the operation of the surface diffusion mechanism at the early stage of deposition. The physical explanation of TEM images was based on the finite element calculations of the temperature distribution using the ADINA program .
Go to article

Abstract

Salt stress causes severe reduction in the growth and yield of rice plants. The ability to maintain cellular ion homeostasis is of importance to help the plant survive under salt stress. Salt overly sensitive 1 (SOS1), a plasma membrane Na+/H+ antiporter, has been proven to play critical roles in Na+ exclusion out of the cell, hence contributing to salt tolerance in plants. In this study, we analyzed the natural nucleotide polymorphisms occuring within the entire coding sequence as well as the upstream region of the OsSOS1 gene by comparing the sequences of two contrasting rice genotypes, namely, Nipponbare (salt-sensitive) and Pokkali (salt-resistant). In total, six nucleotide polymorphisms were identified in the coding sequence, and 44 nucleotide substitutions, 225-bp-insertion and 65-bp-deletion were observed in the upstream region of the OsSOS1 gene. Futher in silico analysis revealed that two out of six nucleotide polymorphisms in the coding sequence were non-synonymous (A1600G, G2204A) which led to two amino acid substitutions (T534A, S735N, respectively) positioned in the C-terminal domain of OsSOS1 transporter, but caused no effect on protein properties. In the upstream region of OsSOS1 gene, 44 single nucleotide polymorphisms and two INDELs were identified, in which nucleotide substitutions at position -1392, -1389, -822, -583, +57 and an insertion at position -1035 caused change in cis-regulatory elements. Analysis of OsSOS1 expression revealed that salt induced the expression of the gene in the roots, but not in the leaves in both investigated rice cultivars.
Go to article

This page uses 'cookies'. Learn more