Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

Increasing the share of energy production from renewable sources (RES) plays a key role in the sustainable and more competitive development of the energy sector. Among the renewable energy sources, the greatest increase can be observed in the case of solar and wind power generation. It should be noted that RES are an increasingly important elements of the power systems and that their share in energy production will continue to rise. On the other hand the development of variable generation sources (wind and solar energy) poses a serious challenge for power systems as operators of unconventional power plants are unable to provide information about the forecasted production level and the energy generated in a given period is sometimes higher than the demand for energy in all of the power systems. Therefore, with the development of RES, a considerable amount of the generated energy is wasted. The solution is energy storage, which makes it possible to improve the management of power systems. The objective of this article is to present the concept of electricity storage in the form of the chemical energy of hydrogen (Power to Gas) in order to improve the functioning of the power system in Poland. The expected growth in the installed capacity of wind power plants will result in more periods in which excess energy will be produced. In order to avoid wasting large amounts of energy, the introduction of storage systems is necessary. An analysis of the development of wind power plants demonstrates that the Power to Gas concept can be developed in Poland, as indicated by the estimated installed capacity and the potential amount of energy to be generated. In view of the above, the excess electricity will be available for storage in the form of chemical energy of hydrogen, which
Go to article

Abstract

Current power grid and market development, characterized by large growth of distributed energy sources in recent years, especially in Europa, are according energy storage systems an increasingly larger field of implementation. Existing storage technologies, e.g. pumped-storage power plants, have to be upgraded and extended by new but not yet commercially viable technologies (e.g. batteries or adiabatic compressed air energy storage) that meet expected demands. Optimal sizing of storage systems and technically and economically optimal operating strategies are the major challenges to the integration of such systems in the future smart grid. This paper surveys firstly the literature on the latest niche applications. Then, potential new use case and operating scenarios for energy storage systems in smart grids, which have been field tested, are presented and discussed and subsequently assessed technically and economically.
Go to article

Abstract

Development of open cellular metal foam technology based on investment casting applying the polyurethane pattern is discussed. Technological process comprises preparing of the ceramic mold applying PUR foam as the pattern, firing of the mold, pouring of the liquid Zn-Al alloy into the mold and washing out of the ceramic material from cellular casting. Critical parameters such as the temperature of mold and poured metal, design of gating system affected by metalostatic pressure allowed to produce castings with cellular structure characterized by the open porosity. Metal cellular foams with the open porosity embedded in phase change material (PCM) enhance heat transfer and reduce time operations in energy storage systems. Charging and discharging were performed at the laboratory accumulator by heating and cooling with flowing water characterized by the temperatures of 97-100oC. Temperature measurements were collected from 7 different thermocouples located in the accumulator. In relation to the tests with pure paraffin, embedding of the metal Zn-Al cellular foam in paraffin significantly decreases temperature gradients and melting time of paraffin applied as PCM characterized by the low thermal conductivity. Similarly, reduction of discharging time by this method improves the efficiency of thermal energy storage system applied in solar power plants or for the systems of energy efficient buildings.
Go to article

This page uses 'cookies'. Learn more