Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

The accurate prediction of iron losses has become a prominent problem in electromagnetic machine design. The basis of all iron loss models is found in the spatial field-locus of the magnetic flux density (B) and magnetic field (H). In this paper the behavior of the measured BH-field-loci is considered in FEM simulation. For this purpose, a vector hysteresis model is parameterized based on the global measurements, which then can be used to reproduce the measurement system and obtain more detailed insights on the device and its local field distribution. The IEM has designed a rotary loss tester for electrical steel, which can apply arbitrary BH-field-loci occurring during electrical machine operation. Despite its simplicity, the proposed pragmatic analytical model for vector hysteresis provides very promising results.
Go to article

Abstract

Magnetic circuits of electromagnetic energy converters, such as electrical machines, are nowadays highly utilized. This proposition is intrinsic for the magnetic as well as the electric circuit and depicts that significant enhancements of electrical machines are difficult to achieve in the absence of a detailed understanding of underlying effects. In order to improve the properties of electrical machines the accurate determination of the locally distributed iron losses based on idealized model assumptions solely is not sufficient. Other loss generating effects have to be considered and the possibility being able to distinguish between the causes of particular loss components is indispensable. Parasitic loss mechanisms additionally contributing to the total losses originating from field harmonics, non-linear material behaviour, rotational magnetizations, and detrimental effects caused by the manufacturing process or temperature, are not explicitly considered in the common iron-loss models, probably even not specifically contained in commonly used calibration factors. This paper presents a methodology being able to distinguish between different loss mechanisms and enables to individually consider particular loss mechanisms in the model of the electric machine. A sensitivity analysis of the model parameters can be performed to obtain information about which decisive loss origin for which working point has to be manipulated by the electromagnetic design or the control of the machine.
Go to article

This page uses 'cookies'. Learn more