Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

Determining the size of source effect of a radiation thermometer is not an easy task and manufacturers of these thermometers usually do not indicate the deviation to the measured temperature due to this effect. It is one of the main uncertainty components when measuring with a radiation thermometer and it may lead to erroneous estimation of the actual temperature of the measured target. We present an empiric model to estimate the magnitude of deviation of the measured temperature with a long-wavelength infrared radiation thermometer due to the size of source effect. The deviation is calculated as a function of the field of view of the thermometer and the diameter of the radiating source. For thermometers whose field of view size at 90% power is approximately equal to the diameter of the radiating source, it was found that this effect may lead to deviations of the measured temperature of up to 6% at 200ºC and up to 14% at 500ºC. Calculations of the temperature deviation with the proposed model are performed as a function of temperature and as a function of the first order component of electrical signal.
Go to article

Abstract

Decisions involving comparisons of Arabic number digits often exhibit an interference between the physical size of the digit and the implied numerical magnitude, a phenomenon called the size-congruity effect. Related research over the past four decades has yielded two competing models of the phenomenon: an early interaction account, where interference between numerical and physical magnitude occurs at an early encoding stage, and a late interaction account, where the interference occurs downstream as response competition during the decision process. In the present study, we asked participants to compare the physical sizes of pairs of Arabic digits. We fit the resulting response time distributions with a shifted Wald model, a single boundary accumulator model, which gave us estimates of information accumulation rate (drift rate), response threshold, and nondecision time. We found that incongruity between physical size and numerical magnitude affected the decision-related estimates of drift rate and response threshold. Further, a Bayesian analysis confirmed a null effect of congruity on nondecision time. These results indicate that the observed interference originates from decision-related processes, lending further support for a late interaction account of the size-congruity effect.
Go to article

Abstract

In a series of recent papers we have shown how the continuum mechanics can be extended to nano-scale by supplementing the equations of elasticity for the bulk material with the generalised Young-Laplace equations of surface elasticity. This review paper begins with the generalised Young-Laplace equations. It then generalises the classical Eshelby formalism to nano-inhomogeneities; the Eshelby tensor now depends on the size of the inhomogeneity and the location of the material point in it. The generalized Eshelby formalism for nano-inhomogeneities is then used to calculate the strain fields in quantum dot (QD) structures. This is followed by generalisation of the micro-mechanical framework for determining the effective elastic properties of heterogeneous solids containing nano-inhomogeneities. It is shown that the elastic constants of nanochannel-array materials with a large surface area can be made to exceed those of the non-porous matrices through pore surface modification or coating. Finally, the scaling laws governing the properties of nano-structured materials are given.
Go to article

This page uses 'cookies'. Learn more