Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 36
items per page: 25 50 75
Sort by:

Abstract

Work in unfavorable, changing environmental conditions negatively affects people working on scaffoldings used on construction sites, which may increase the risk of occurrence of dangerous situations. The purpose of this article is to show the scale of temperature changes which workers are exposed to. The paper compares examples of temperature measurements obtained from a metrological station and during tests on scaffoldings located in the Lodz and Warsaw regions. This article also presents the methodology of examining environmental parameters of the surroundings where employees work on scaffoldings. Analysis results show that high temperatures and significant temperature variations frequently occur on the scaffoldings, which leads to a lack of adaptability and consequently to tiredness or decreased alertness. Unfavorable environmental conditions can lead to behaviors which, in turn, can cause accidents.
Go to article

Abstract

The meaning and scope of the concept of security in extenso, as well as its special type, i.e. maritime safety and security, has been the subject of many considerations and discussions for decades, and perhaps for centuries. Security is most often understood as one of the basic functions of the State implying counteracting all threats. In axiological terms, as a risk-free state, maritime safety is a value, and in functional terms, as a desirable state, it is expressed in the protective function of law. The law must be structured in such a way as to constantly realize this function. Achieving maritime safety can therefore be seen as the capacity of law and institutions, for example, to protect a ship against loss, protect health and life of people employed on a ship, and protect the environment from pollution.
Go to article

Abstract

The paper presents the problem of intelligent installations in buildings, their construction and integration with other systems present in the building. Attention has been focused on systems designed to ensure the safety of property and persons residing in different facilities. It also discusses ways to control the microclimate and other aspects of the building so as to obtain the maximum comfort of the people placed in them. Considering its high popularity, the smart installation based on the KNX/EIB standard is further discussed, examples of algorithms for dealing with security threats are given as well as the functions indicated which can improve the comfort of using a facility.
Go to article

Abstract

The article presents the issue related with a proper preparation of a data sheet for the analysis, the way of verifying the correctness and reliability of input information, and proper data encoding. Improper input or coding of data can significantly influence the correctness of performed analyses or extend their time. This stage of an analysis is presented by an authorship questionnaire for the study on occupational safety culture in a manufacturing plant, using the Statistica software for analyses. There were used real data, obtained during the research on the issue of occupational safety and factors having the greatest influence on the state of occupational safety.
Go to article

Abstract

To reliably calibrate suitable partial safety factors, useful for the specification of global condition describing structural safety level in considered design case, usually the evaluation of adequate failure probability is necessary. In accidental fire situation, not only probability of the collapse of load-bearing structure, but also another probability related to the people staying in a building at the moment of fire occurence should be assessed. Those values are different one from another in qualitative sense but they are coupled because they are determined by similar factors. The first one is the conditional probability with the condition that fire has already occured, whereas the second is the probability of failure in case of a potential fire, which can take place in the examined building compartment, but its ignition has not yet appeared. An engineering approach to estimate such both probabilities is presented and widely discussed in the article.
Go to article

Abstract

In the paper methods for conducting Road Safety Inspections (SIs) in Italy and Poland are described and compared. The goal of the study is to improve the quality and efficiency of the safety inspections of road network by using low cost equipment (GPS, Tablet, Camera) and specific software. Particular attention was paid to the need for proper calibration of factors, causing traffic safety hazard associated with road infrastructure. The model developed according to the Italian procedures was adapted to comply with the checklists and evaluation criteria of the Polish guidelines. Overall, a good agreement between the two approaches was identified, however some modification was required to include new safety issues, characteristic for the Polish network for safety inspection of two lane rural roads. To test the applicability about 100 km of regional two lane roads in Poland were inspected with Polish and Italian procedures.
Go to article

Abstract

The paper presents findings from research project Mobis which is aimed at developing a method of assessing safety of unsignalised pedestrian road crossings using video image analysis. Pedestrian and vehicle traffic has been recorded at selected zebra crossing sites in Warsaw and Wrocław, before and after installation of active signage systems SignFlash and Levelite. Speeds of approaching vehicles were measured and drivers’ behaviour was classified using video analysis. The paper presents a comparison of effectiveness of systems such as SignFlash and Levelite based on changes in the mean and standard deviation of vehicle spot speeds as well as changes in speed profiles of vehicles approaching the crossings. Results indicate that both SignFlash and Levelite active signage reduce mean vehicle approach speeds and have a positive impact on drivers’ behaviour.
Go to article

Abstract

U-turn lanes eliminate left turns at intersections and allow the manoeuvre to be made via median crossovers beyond the intersection. However, there are many situations where road infrastructures are characterized by the reduced width of the median. It is clear that, in such situations, we must adopt design criteria that take into account limitations imposed by the width of the cross-section of the road. This is the reason why it is necessary to adopt design solutions which expect a complete reorganization of the road section affected by the insertion of U-turns. In this paper, we intend to propose original guidelines for U-turn lane design, suitable to guarantee both the necessity to offer a high level of functionality of the road sections to be implemented by U-turns, and the principles of safety in order to reduce unsafe conditions during inversion manoeuvres as much as possible.
Go to article

Abstract

This paper describes a design process of HALE PW-114 sensor-craft, developed for high altitude (20 km) long endurance (40 h) surveillance missions. Designed as a blended wing (BW) configuration, to be made of metal and composite materials. Wing control surfaces provide longitudinal balance. Fin in the rear fuselage section together with wingtips provide directional stability. Airplane is equipped with retractable landing gear with controlled front leg that allows operations from conventional airfields. According to the initial requirements it is twin engine configuration, typical payload consists of electro-optical/infra-red FLIR, big SAR (synthetic aperture radar) and SATCOM antenna required for the longest range. Tailless architecture was based on both Horten and Northrop design experience. Global Hawk was considered as a reference point – it was assumed that BW design has to possess efficiency, relative payload and other characteristics at least the same or even better than that of Global Hawk. FLIR, SAR and SATCOM containers were optimised for best visibility. All payload systems are put into separate modular containers of easy access and quickly to exchange, so this architecture can be consider as a „modular”. An optimisation process started immediately when the so-called “zero configuration”, called PW-111 was ready. It was designed in the canard configuration. A canard was abandoned in HALE PW-113. Instead, new, larger outer wing was designed with smaller taper ratio. New configuration analysis revealed satisfactory longitudinal stability. Calculations suggested better lateral qualities for negative dihedral. These modifications, leading to aerodynamic improvement, gave HALE PW-114 as a result. The design process was an interdisciplinary approach, and included a selection of thick laminar wing section, aerodynamic optimisation of swept wing, stability analysis, weight balance, structural and flutter analysis, many on-board redundant systems, reliability and maintability analysis, safety improvement, cost and performance optimisation. Presented paper focuses mainly on aerodynamics, wing design, longitudinal control and safety issues. This activity is supported by European Union within V FR, in the area Aeronautics and Space.
Go to article

Abstract

The paper focuses on different approaches to the safety assessment of concrete structures designed using nonlinear analysis. The method based on the concept of partial factors recommended by Eurocodes, and methods proposed by M. Holicky, and by the author of this paper are presented, discussed and illustrated on a numerical example. Global safety analysis by M. Holicky needs estimation of the resistance coefficient of variation from the mean and characteristic values of resistance, and requires two separate nonlinear analyses. The reliability index value and the sensitivity factor for resistance should be also identified. In the method proposed in this paper, the resistance coefficient of variation necessary to calculate the characteristic value of resistance may be adopted from test results and the resultant partial factor for materials properties, and may be calculated according to Eurocodes. Thus, only one nonlinear analysis from mean values of reinforcing steel and concrete is required.
Go to article

Abstract

Starting from consideration that urban intersections are sites with promise for safety and operational improvements, the paper describes the steps taken to develop a crash predictive model for estimating the safety performance of urban unsignalized intersections located in Palermo, Italy. The focus is on unsignalized four-legged one-way intersections widespread in Italian downtowns. The sample considered in the study consist of 92 intersections in Palermo, Italy. For the study were collected crashes occurred in the sites during the years 2006‒2012, geometric design and functional characteristics and traffic flow. Results showed that data were overdispersed and NB1 distributed. In order to account for the correlation within responses Generalized Estimating Equations (GEE) were used under different working correlation matrices.
Go to article

Abstract

The efficient protection (support reinforcement) of a wall and heading crossing ensures continuity of the production cycle, and that is a quick moving of the scraper conveyor to the wall. Using low or high bolting as a support reinforcement element in wall and heading crossings allows for the elimination of traditional methods of maintaining longwall-gate crossings, and therefore allows for the efficient use high performance modern wall complexes. The paper presents the long underground experience, of the Knurów–Szczygłowice mine of efficient support wall and heading crossing maintenance, which was bolted to the rock mass with the usage of two pairs of bolts, showing full technical and economical usefulness of this support reinforcement method. The article also highlights work safety and the increasingly common usage of endoscopies when specifying the range of crack areas which directly effects the proper choice in number, load-capacity and length of the used bolts. The underground studies the measurements of the reach of the zones of fracturing and roof stratification (using endoscopes and wire type stratification meters) and the laboratory tests (using the test stand) have allowed to determine the safety factor for maintenance of the longwall gangway crossing, directly resulting in the necessity to install additional reinforcement. The value of the safety factor Sbsc-ch greater than 1 is advantageous and safe, and the value less than or equal to 1 can lead to a significant deterioration of the conditions of maintenance of a wall and heading crossing which was bolted.
Go to article

Abstract

Economic development is strictly dependent on access to inexpensive and reliable energy sources based on diversified primary fuels. The strategic framework for the construction of the energy mix is defined in the Energy Policy of the State, the content of which, in terms of its mandatory elements, has been specified in the Energy Law. The task of the Energy Policy of the State is to create the shape of the future power sector, including designing the most advantageous regulatory, system and technical solutions guaranteeing the appropriate level of energy security of the country, monitoring of the system’s evolution and also designing and implementing changes aimed at the optimization of the functioning mechanisms. The vision of the development of the power system at the global level should also reflect changes in the formation of dispersed civil energy structures. Unfortunately, the results of the conducted analyses reveal existing imperfections of the data acquisition and information system, which should be used in the planning process. This issue is particularly important from the perspective of the dynamically developing concept of the energy self-sufficiency of communes and the emergence of energy clusters. The present paper describes the functioning of strategic planning in the field of the electric power system with an illustration of the improperly functioning mechanisms of information transfer in the context of the advancement of dispersed civil energy structures.
Go to article

Abstract

Hybrid Renewable Energy Systems connected to the traditional power suppliers are an interesting technological solution in the field of energy engineering and the integration of renewable systems with other energy systems can significantly increase in energy reliability. In this paper, an analysis and optimization of the hybrid energy system, which uses photovoltaic modules and wind turbines components connected to the grid, is presented. The system components are optimized using two objectives criteria: economic and environmental. The optimization has been performed based on the experimental data acquired for the whole year. Results showed the optimal configuration for the hybrid system based on economical objective, that presents the best compromise between the number of components and total efficiency. This achieved the lowest cost of energy but with relatively high CO2 emissions, while environmental objective results with lower CO2 emissions and higher cost of energy and presents the best compromise between the number of components and system net present cost. It has been shown that a hybrid system can be optimized in such a way that CO2 emission is maximally reduced and – separately – in terms of reducing the cost. However, the study shows that these two criteria cannot be optimized at the same time. Reducing the system cost increase CO2 emission and enhancing ecological effect makes the system cost larger. However, depends on strategies, a balance between different optimization criteria can be found. Regardless of the strategy used economic criteria – which also indirect takes environmental aspects as a cost of penalties – should be considered as a major criterion of optimization while the other objectives including environmental objectives are less important.
Go to article

Abstract

In order to improve the efficiency and ensure the security of power supply used in a mine, this paper mainly studies the quasi-resonant flyback secondary power supply and analyzes its operational principles based on the requirements of soft-switching technology. In accordance with the maximum energy of a short-circuit and the request of maximum output voltage ripple, this paper calculates the spectrum value of the output filter capacitor and provides its design and procedures to determine the parameters of the main circuit of power supply. The correctness and availability of this theory are eventually validated by experiments.
Go to article

Abstract

The problem of poor quality of traffic accident data assembled in national databases has been addressed in European project InDeV. Vulnerable road users (pedestrians, cyclists, motorcyclists and moped riders) are especially affected by underreporting of accidents and misreporting of injury severity. Analyses of data from the European CARE database shows differences between countries in accident number trends as well as in fatality and injury rates which are difficult to explain. A survey of InDeV project partners from 7 EU countries helped to identify differences in their countries in accident and injury definitions as well as in reporting and data checking procedures. Measures to improve the quality of accident data are proposed such as including pedestrian falls in accident statistics, precisely defining minimum injury and combining police accident records with hospital data.
Go to article

Abstract

The article presents the results of tests on SHC-40 hydraulic props equipped with two types of valve blocks: standard (with spring steel cylinder) and BZG-2FS (with gas spring). The research was conducted using impact mass of 4,000 kg and with extreme dynamic load of free fall impact mass of 20,000 kg released from different heights h. The dynamic tests involved a camera with the speed of image capture up to 1,200 frames/sec, which made it possible to register the stream of liquid at the dynamic load and to determine the valve opening time. The study conducted on SHC-40 NHR10 props equipped with two types of valve blocks: a standard and the BZG-2FS fast acting relief, showed that the prop with the BZG-2FS block is more suitable and more effective in the case of areas with high risk of mining tremors and rapid stress relief of a seam. Research methodology developed in the Central Mining Institute combines digital recording technique of pressure in a prop and fast registration of the images, and allows to acquire more accurate analysis of dynamic phenomena in the prop during testing.
Go to article

Abstract

The paper looks at the issues of operation safety of the national power grid and the characteristics of the national power grid in the areas of transmission and distribution. The issues of operation safety of the national transmission and distribution grid were discussed as well as threats to operation safety and security of the electricity supply related to these grids. Failures in the transmission and distribution grid in 2017, caused by extreme weather conditions such as: a violent storm at the night of 11/12.08.2017, hurricane Ksawery on 5–8.10.2017, and hurricane Grzegorz on 29–30.10.2017, the effects of which affected tens of thousands of electricity consumers and led to significant interruptions in the supply of electricity were presented. At present, the national power (transmission and distribution) grid does not pose a threat to the operation safety and security of the electricity supply, and is adapted to the current typical conditions of electricity demand and the performance of tasks during a normal state of affairs, but locally may pose threats, especially in extreme weather conditions. A potentially high threat to the operation safety of the national power grid is closely linked to: age, technical condition and the degree of depletion of the transmission and distribution grids, and their high failure rate due to weather anomalies. Therefore, it is necessary to develop and modernize the 400 and 220 kV transmission grids, cross-border interconnections, and the 110 kV distribution grid (especially in the area of large urban agglomerations), and the MV distribution grid (especially in rural areas). The challenges faced by the transmission and distribution grid operators within the scope of investment and operating activities, with a view to avoiding or at least reducing the scale of grid failures in the case of future sudden high-intensity atmospheric phenomena, are presented.
Go to article

Abstract

Toys emitting sounds are classified as significant sources of noise found in the children environment. Impulse and continuous noise emitted by toys, used in close to the child’s ear, acting directly on the organ of hearing, can lead to serious adverse health effects. This is especially true for children under the age of three, in which the state of the hearing organ determines their intellectual development. The current level of safety of sound emitting toys intended for children in this age group is insufficient. This is confirmed by the reports from the control of market surveillance authorities. A new approach to the assessment of children’s exposure to noise generated by toys, included in EN 71-1:2011 + A2:2013 Standard, based on the permissible values applicable to the workplaces, requires further tests and verification. The paper presents the results of the research work and assesses the level of sound emitted by toys in the light of current standard requirements, carried out using the author’s methodology. Toys intended for children under the age of 3 years, commercialized on the European market by Polish manufacturers and importers were tested. The results of the tests allowed us to determine the impact of duration of the sound pressure level measurement on the final result.
Go to article

Abstract

The paper presents a method for wireless measurement of car wheel air pressure and temperature using the Tire Pressure Monitoring System, or TPMS module - one of the latest safety systems introduced by the automotive industry - with readings taken on a specifically designed test bench. The paper describes the structure and operating principle of the test bench key elements and how they work with the sensors, the TPMS module, and reference instruments, as well as the data format and accuracy of data transmission between TPMS and the host computer. The software designed for an embedded system emulating the real on-board computer allows for observing raw sensor readings and the effect of calibration in two points of the characteristics.
Go to article

Abstract

Verification of electrical safety in low-voltage power systems includes the measurement of earth fault loop impedance. This measurement is performed to verify the effectiveness of protection against indirect contact. The widespread classic methods and meters use a relatively high value of the measuring current (5#4;20) A, so that they are a source of nuisance tripping of residual current devices (RCDs). The meters dedicated to circuits with RCDs usually use an extremely low value of current (lower than 15 mA), which in many cases it is not acceptable in terms of the measurement accuracy. This paper presents a method of earth fault loop impedance measurement in 3-phase circuits, without nuisance tripping of RCDs – the concept of measurement, the meter structure and the experimental validation. The nuisance tripping is avoided in spite of the use of measuring current value many times higher than that of the rated residual current of RCDs. The main advantage of the proposed method is the possibility of creating values of measuring current in a very wide range, what is very important with regard to accuracy of the measurement.
Go to article

Abstract

The Dez dam was commissioned in 1963 and since sediments accumulated in the reservoir up to an elevation of approximately 15m below the intake of the power tunnel. One of the possible measures to improve operation of the reservoir is by heightening of the existing dam. This paper describes the conducted procedure for static and thermal calibration of this 203m dam in Iran based on micro geodesies measurements. Also the nonlinear response of existing dam is investigated under maximum credible earthquake ground motions considering joint behavior and mass concrete cracking and safety of dam is evaluated for possible heightening. For thermal calibration of provided numerical model, transient thermal analysis was conducted and results were compared with thermometers records installed in central block. In addition, for static calibration; thermal distribution within dam body, dam self weight, hydrostatic pressure and silt load applied on the 3D fi nite element model of dam-reservoir-foundation were considered. Results show that the distribution of stresses will be critical within dam for heightening case under seismic loads in MCL.
Go to article

Abstract

The main goal of this work is to show the new approach to determining safety technological levels (SLs) in terms of water quality and its chemical stability, as well as issues of water corrosion properties in water distribution systems (WDSs), due to the fact that water supply pipes are prone to corrosion. In the paper the methodology of determining the risk associated with threat to technical infrastructure was considered. The concept was studied on the basis of real operational data from the water treatment plant. The probability of exceeding the individual parameters for WTPI is slightly larger than for WTPII, which means that this water treatment process may cause lack of chemical stability in the water supply network. Operators should anticipate in the process of designing water distribution system, using proper materials, as to ensure an adequate level of safety from the water source to the water recipient. It should be noted that it is necessary to adjust the material of internal installation of water supply networks to the parameters of the water. At present, there are no correlations between the designing step and water parameters. It was concluded that to protect the water supply infrastructure, which belongs to critical infrastructure, water company should put more emphasis on distribution of stable water that has not potentially corrosion properties. Some suggestions were made for the protection of WDS and to ensure safety of system functioning and long-term usability of water pipes.
Go to article

This page uses 'cookies'. Learn more