Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

Three types of rock glaciers (moraine, cirque and subslope ones) were distinguished in northwestern Wedel Jarlsberg Land. Subslope rock glaciers were found different from nival moraines. A development of subslope and fossil cirque rock glaciers was connected with the older Holocene whereas of active cirque and moraine rock glaciers with the Little Ice Age.
Go to article

Abstract

Rock glaciers are lobate or tongue-shaped landforms which consist of rock debris and have either an ice core or an ice-cemented matrix. Characteristics such as the landscape setting, morphology, material and current geomorphological state are universally used to classify rock glaciers. In Antarctica, rock glaciers have only been surveyed on the Antarctic Peninsula, Ellsworth Mountains and in Victoria Land. This paper presents the first data on the identification and description of rock glaciers in the Jutulsessen nunataks, Dronning Maud Land, East Antarctica. The rock glaciers in the Jutulsessen exhibit a variety of morphologies and states. Our data suggests that the rock glaciers in Brugdedalen and Jutuldalen are active, while the features at Vassdalen and Grjotlia are considered inactive, and a feature at Grjotøyra is considered relict. The described rock glaciers do not fit into existing classification systems and appear to be different to alpine, Arctic and Andean rock glaciers. They further present examples that fit both the ‘glaciogenic’ and ‘permafrost’ development theories.
Go to article

Abstract

This study used ground penetrating radar soundings to examine a tongue-shaped rock glacier (64°04’S 58°25’W) on James Ross Island, Antarctic Peninsula, in January 2005. The rock glacier studied has multiple well-developed transverse ridges and approximately 800 m long from the talus of its head to its frontal slopes and is 300 m wide in the middle. The longitudinal ground penetrating radar profile identified debris bands which dip up-glacier, similar to the thrust structures in the compression zone of a valley glacier. Transverse ground penetrating radar profiles indicated a layered structure which is inclined towards the central part of the rock glacier and which resembles the transverse foliation of a valley glacier. Consequently, the internal structure of the rock glacier is revealed as being similar to the “nested spoons” common in the interior of valley glaciers. We concluded that this rock glacier has been created by the deformation of a glacier ice core and a thick and continuous debris mantle.
Go to article

This page uses 'cookies'. Learn more