Search results

Filters

  • Journals
  • Keywords
  • Date

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

The touch trigger probe plays an important role in modern metrology because of its robust and compact design with crash protection, long life and excellent repeatability. Aside from coordinate measuring machines (CMM), touch trigger probes are used for workpiece location on a machine tool and for the accuracy assessment of the machine tools. As a result, the accuracy of the measurement is a matter of interest to the users. The touch trigger probe itself as well as the measuring surface, the machine tool, measuring environment etc. contribute to measurement inaccuracies. The paper presents the effect of surface irregularities, surface wetness due to cutting fluid and probing direction on probing accuracy on a machine tool.
Go to article

Abstract

An outstanding Polish biochemist, laureate of the Foundation for Polish Science Prize in 2007, member of the Polish Academy of Sciences, a head of the Department of Molecular Biomedicine at the Institute of Bioorganic Chemistry, PAS in Poznan Professor Wlodzimierz Krzyzosiak’s research path led from the structural chemistry of nucleic acids, through molecular genetics and cancer genetics to molecular medicine. In the last years, Professor's scientific activity focused on understanding the role of RNA in the pathogenesis of human neurological diseases caused by the expansion of repetitive sequences. He also developed new methods of experimental therapy for this group of disorders using antisense oligonucleotides and RNA interference technology. He analyzed the factors influencing the microRNA biogenesis and used this knowledge to improve RNA interference technology tools in therapeutic approaches. Overall, Professor Krzyżosiak coauthored more than 130 publications, which have been cited more than 3500 times so far.
Go to article

Abstract

Lean mixture burning leads to a decrease in the temperature of the combustion process and it is one of the methods of limiting nitric oxide emissions. It also increases engine efficiency. An effective method to correct lean mixture combustion can be a two-stage system of stratified mixture combustion in an engine with a prechamber. This article presents the results of laboratory research on an SI engine (spark ignition) with a two-stage combustion system with a cylinder powered by gasoline and a prechamber powered by propane-butane gas LPG (liquefied petroleum gas). The results were compared to the results of research on a conventional engine with a one-stage combustion process. The test engine fuel mixture stratification method, with a two-stage combustion system in the engine with a prechamber, allowed to burn a lean mixture with an average excess air factor equal to 2.0 and thus led to lower emissions of nitrogen oxides in the exhaust of the engine. The test engine with a conventional, single-stage combustion process allowed to properly burn air-fuel mixtures of excess air factors λ not exceeding 1.5. If the value λ > 1.5, the non-repeatability factor COVLi increases, and the engine efficiency decreases, which makes it virtually impossible for the engine to operate. The engine with a two-stage combustion process, working with λ = 2.0, the Qin/Qtot = 2.5%, reduced the NOx content in the exhaust gases to a level of about 1.14 g/kWh. This value is significantly lower than the value obtained in a conventional engine, which worked at λ = 1.3 with comparable non-repeatability of successive cycles (about 3%) and a similar indicated efficiency (about 34%), was characterised by the emissions of NOx in the exhaust equal to 26.26 g/kWh.
Go to article

This page uses 'cookies'. Learn more