Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 17
items per page: 25 50 75
Sort by:

Abstract

The author, as a former pupil of the title figure of this paper, and as a leading his cooperator in numerous creative works, recalls memoires and presents an analysis of the personality of late professor of architectute, J. Tadeusz Gawłowski. The paper represents both – objective and official features of chronicle, hence also introduces readers into more personal secrets of the outstanding architect: creator, scholar and academic teacher – being simultaneously a picturesque and friendly person. He was connected mainly with Kraków University of Technology, but sharing also his activity in order to fulfill needs of three other, important academic schools.
Go to article

Abstract

Bragg scattering of waves propagating in a periodically disturbed substrate is widely applied in optics and micro-acoustic systems. Here, it is studied for Rayleigh waves propagating on a periodically grooved elastic substrate. Practically applied groove depth in the Bragg grating reflectors does not exceed a few percent of the Rayleigh wavelength. Here, the analysis is carried out for periodic grooves of larger depth by applying the elastic plate model for the groove walls. The computed results show that the surface wave existence and reflection depends strongly on both the groove depth and period, and that there are limited domains of both for practical applications, primarily in comb transducers of surface waves.
Go to article

Abstract

Reflecting structures placed over the stage in auditoria and concert halls should provide sound reflection in a way that enhances sound emission from the stage without causing acoustic defects in the interior. Model studies conducted by the authors were used to determine the relative level of sound reflection by reflecting structures as a function of frequency for a number of geometric configurations and materials. Analysis of the results allowed drawing conclusions about the effect of modifications of the ceiling over the reflecting panels on the quality of the sound reflected from them. It was shown that modification of the ceiling over the reflecting panels by employing highly sound absorbing materials significantly improved the characteristics of the reflected sound. Also, certain configurations of elements located in the space under the ceiling should be avoided, as the experiments indicated the occurrence of adverse acoustic effects.
Go to article

Abstract

Comb transducers are applied in ultrasonic testing for generation of Rayleigh or Lamb waves by scattering of the incident bulk waves onto surface waves at the periodic comb-substrate interface. Hence the transduction efficiency, although rarely discussed in literature, is an important factor for applications determining the quality of the measured ultrasonic signals. This paper presents the full-wave theory of comb transducers concluded by evaluation of their efficiency for a couple of examples of standard and certain novel configurations.
Go to article

Abstract

The paper presents the verification of a solution to the narrow sound frequency range problem of flat reflective panels. The analytical, numerical and experimental studies concerned flat panels, panels with curved edges and also semicircular elements. There were compared the characteristics of sound reflected from the studied elements in order to verify which panel will provide effective sound reflection and also scattering in the required band of higher frequencies, i.e. above the upper limit frequency. Based on the conducted analyzes, it was found that among some presented solutions to narrow sound frequency range problem, the array composed of panels with curved edges is the most preferred one. Nevertheless, its reflection characteristic does not meet all of the requirements, therefore, it is necessary to search for another solution of canopy which is effective over a wide frequency range.
Go to article

Abstract

Solar radiation reflectance was analysed to characterize Arctic ornithogenic tundra developing in the vicinity of large breeding colony of Brunnich‘s guillemots Uria lomvia and kittiwakes Rissa tridactyla at the foot of Gnĺlberget cliff (Hornsund, SW Spitsbergen). Radiometric method was found to be a useful tool for studying structure and functioning of plant formations. We measured reflectance of four wavelengths: 554 nm (YG), 655 nm (RED), 870 nm (NIR) and 1650 nm (SWIR) at 10 plots situated along the transect running from the colony to the sea. Moreover, data of plant community character, species quantitative composition as well as total biomass were collected to relate these parameters with the spectral values. The results showed that radiometric data characterized vegetation well enough to recognize the same plant communities on the basis of spectral reflectance as distinguished with traditional phytosociological methods.
Go to article

Abstract

Ray tracing simulation of sound field in rooms is a common tool in room acoustic design for predicting impulse response. There are numerous commercial engineering tools utilising ray tracing simulation. A specific problem in the simulation is the modelling of diffuse reflections when contribution of individual surface is prevailing. The paper introduces modelling of scattering which is interesting when the whole impulse response of a room is not a goal but contribution of certain surface. The main goal of the project is to shape directivity characteristics of scattered reflection. Also, an innovative approach is suggested for converting the energy histogram information obtained by ray tracing into an “equivalent impulse response”. The proposed algorithm is tested by comparing the results with measurements in a real sound field, realised in a scaled model where a diffusing surface is hardware-implemented.
Go to article

Abstract

Studies on the quality of bituminous coal are mainly focused on physico-chemical analysis, examining the ash content, sulphur content, volatile matter content, moisture content, and the Net Calorific Value of coal. Until now, the above mentioned parameters form the basis of the Polish Standard PN-82/87002, on the basis of which individual types of bituminous coal are determined. In addition, an elemental analysis, providing information about the content of primary elements in the organic matter of solids, i.e. coal, hydrogen, nitrogen, oxygen, and sulphur, is carried out for the selected samples. This issue has been studied by many authors, which undoubtedly provide invaluable knowledge due to the huge amount of data, but, as the authors themselves indicate, the knowledge of the petrography of coal, coking properties (Probierz et al. 2012) and finally the coke obtained from individual coal types (based on tests carried out using the Karbotest installation or the so-called „box tests” performed in the coke oven battery) is still very limited. The article discusses the impact of petrographic composition on the quality of metallurgical coke. The analysis was performed using samples of coking coal from the following mines: Pniówek, Zofiówka, Borynia, and Krupiński. The mentioned coal types are used to produce coke mixtures used for the production of coke in the Przyjaźń and Radlin coking plants. Based on the rank of coal and physicochemical parameters, the mentioned coal types were classified according to the Polish classification and the UN/ECE International Classification of In-Seam Coals (UN/ECE 1995). The prediction of thermomechanical properties of coke (CSR and CRI) performed according to the original CCP method were compared with the results obtained using the classical method of Nippon Steel Corporation.
Go to article

Abstract

The paper presents the new solution to a road acoustic screen consisting of elements which are highly diffusing and simultaneously resistant to weathering, but also characterised by a sound absorption. There is described the comprehensive research of such the road acoustic screen with absorbing and diffusing surface. The study includes screen’s resistance to wind load and snow removal, impact tests and mea- surements of some acoustic parameters
Go to article

Abstract

This article presents an efficient method of modelling acoustic phenomena for real-time applications such as computer games. Simplified models of reflections, transmission, and medium attenuation are described along with assessments conducted by a professional sound designer. The article introduces representation of sound phenomena using digital filters for further digital audio processing.
Go to article

Abstract

Sub-bottom profiler (SBP) is an acoustic instrument commonly used to survey underwater shallow geological structure and embedded objects whose most important performance parameter is the actual vertical resolution. This paper presented a methodology to measure and evaluate the actual vertical resolution of SBP based on an experiment in an anechoic tank, which was divided into three components: building of artificial geological model, measurement of acoustic parameters, and determination of actual vertical resolution of the acoustic profiles. First, the wedge-shaped geological model, whose thickness could be accurately controlled, was designed and built in an anechoic tank to try to directly measure the vertical resolution of SBP. Then, the acoustic pulse width of SBP was measured to calculate the theoretical general vertical resolution and extreme vertical resolution. Finally, based on the acoustic profiles obtained in the experiment, the method which was used to evaluate the actual vertical resolution by measuring the duration of reflection event was put forward. Due to comparing measurement data of different parameter settings of the SBP, the study has revealed that the SBP had the lowest resolution in the 4 kHz–500 µs setting, which was 226.5 µs, or 36.2 cm, and the highest resolution in the 15 kHz–67 µs setting, which was 72.7 µs, or 11.6 cm. The vertical resolution decreased with the increase of the pulse width. The results also showed that the actual resolution was close to the theoretical general resolution and far from the extreme resolution.
Go to article

Abstract

The paper presents the concept of a fully planar treeshaped antenna with quasi-fractal geometry. The shape of the proposed radiator is based on a multi-resonant structure. Developed planar tree has symmetrical branches with different length and is fed by a coplanar waveguide (CPW) with modified edge of the ground plane. The antenna of size 29 mm x25 mm has been designed on Taconic - RF-35 substrate (r = 3.5, tg= 0.0018, h = 0.762 mm). The paper shows simulated and measured characteristics of return loss, as well as measured radiation patterns. The proposed antenna could be a good candidate for broadband applications (for instance: wideband imaging for medical application and weather monitoring radars in satellite communication etc.)
Go to article

Abstract

Spectroscopy has become one of the most used non-invasive methods to detect plant diseases before symptoms are visible. In this study it was possible to characterize the spectral variation in leaves of Solanum lycopersicum L. infected with Fusarium oxysporum during the incubation period. It was also possible to identify the relevant specific wavelengths in the range of 380–1000 nm that can be used as spectral signatures for the detection and discrimination of vascular wilt in S. lycopersicum. It was observed that inoculated tomato plants increased their reflectance in the visible range (Vis) and decreased slowly in the near infrared range (NIR) measured during incubation, showing marked differences with plants subjected to water stress in the Vis/NIR. Additionally, three ranges were found in the spectrum related to infection by F. oxysporum (510–520 nm, 650–670 nm, 700–750 nm). Linear discriminant models on spectral reflectance data were able to differentiate between tomato varieties inoculated with F. oxysporum from healthy ones with accuracies higher than 70% 9 days after inoculation. The results showed the potential of reflectance spectroscopy to discriminate plants inoculated with F. oxysporum from healthy ones as well as those subjected to water stress in the incubation period of the disease.
Go to article

Abstract

Effective use of energy in various branches of economy is one of world trends in development of power engineering. Relevant energy consumption occurs during exploitation of buildings, so there is still potential to diminish it as far as heating, ventilation, and air conditioning are concerned. Particularly in summer season, the choice of respective roofing colour can play a decisive role for the heat flux transferred to the inside of the object. Decrease of heat flux causes a lower heat burden to the building and lower power consumption by the air conditioning systems. In winter, on the contrary, heat flux transferred to building’s interior should be higher, as a result, demand of energy for heating will be lower. However, calculations of the heat flux require that energy balance must be made for the object. Unfortunately, not all producers of roofing covers inform about the values of reflectivity and thermal emissivity of their products, which is, in turn, necessary for calculations. In the present paper, research methodology elaborated by authors is proposed for determination of thermal emissivity of roofing covers. The paper presents test stand, methodology, and research results for roofing paper in blue colour (as an example) for which the thermal emissivity is an unknown parameter.
Go to article

Abstract

A hybrid artificial boundary condition (HABC) that combines the volume-based acoustic damping layer (ADL) and the local face-based characteristic boundary condition (CBC) is presented to enhance the absorption of acoustic waves near the computational boundaries. This method is applied to the prediction of aerodynamic noise from a circular cylinder immersed in uniform compressible viscous flow. Different ADLs are designed to assess their effectiveness whereby the effect of the mesh-stretch direction on wave absorption in the ADL is analysed. Large eddy simulation (LES) and FW-H acoustic analogy method are implemented to predict the far-field noise, and the sensitivities of each approach to the HABC are compared. In the LES computed propagation field of the fluctuation pressure and the frequency-domain results, the spurious reflections at edges are found to be significantly eliminated by the HABC through the effective dissipation of incident waves along the wave-front direction in the ADL. Thereby, the LES results are found to be in a good agreement with the acoustic pressure predicted using FW-H method, which is observed to be just affected slightly by reflected waves.
Go to article

Abstract

The ideas of pluralism, their various theoretical developments and ideological concretizations, as well as their promotion and the attempts at implementing them in social practice, constitute a current signum temporis. Pedagogical reflection seems to be particularly sensitive to the issue of pluralism, to its understanding and practising, to multidimensional references of pluralism to the world of values. This especially concerns the values and conflicts of values which are close to various forms of educational activity. What is considered – more or less critically – in pedagogical reflection are different aspects and consequences of the idea of pluralism concerning the currently existing ideas. Simultaneously, the multitude of the ideas of pluralism is taken into account – the ideas which refer to the broadly treated sphere of pedagogical activities and institutions. Pedagogical reflection also considers the threats which co-occur with pluralism or are aimed against it and which are carried by pluralism itself, e.g. in the sphere of education. An expert in the contemporary pedagogical thought and practice, Bogusław Śliwerski, asks: “Will we manage to save the world of pedagogical thought, the pedagogy open to difference, to pluralism (not to be mistaken for another illness which is relativism)?”. By confronting pluralistic perspectives of pedagogy with current ideological and social challenges, he makes this question one of the leading issues in pedagogical and metapedagogical studies. What seems to be heard in this question as well is the appeal to save the world of pedagogical thought as an open world characterized by pluralism, doing this through honest reasoning conducted from different standpoints and perspectives. The assumption of this question comprises the axiologically consolidated belief that it is worth “to save the world of pedagogical thought, the pedagogy open to pluralism”. This is also an inspiration to undertake the (presented in this text) thought concerning the pluralistic perspectives of pedagogy and various faces of pluralisms in the critical recognition of metapedagogical reflection in the case of the Polish pedagogical thought after 1989.
Go to article

This page uses 'cookies'. Learn more