Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:

Abstract

Due to different reasons a significant modal shift from railway to road transport took place over last decades. The basic reasons are pointed in the paper introduction together with contradicting transport policy taking into account environmental and economical challenges. Political vision to stimulate modal shift from road and air to railway cannot become true without achieving railway technical and operational interoperability. Paper describes wide range of technical barriers between individual intraoperable railway systems in civil engineering structures, traction power supply, control command and signalling and the ways, which are being applied to ensure stepwise converging of the technical solutions taking into account safety and technical compatibility, as well as other essential requirements, namely: reliability, accessibility, health and environment.
Go to article

Abstract

This paper addresses the state-variable stabilising control of the power system using such series FACTS devices as TCPAR installed in the tie-line connecting control areas in an interconnected power system. This stabilising control is activated in the transient state and is supplementary with respect to the main steady-state control designed for power flow regulation. Stabilising control laws, proposed in this paper, have been derived for a linear multi-machine system model using direct Lyapunov method with the aim to maximise the rate of energy dissipation during power swings and therefore maximisation their damping. The proposed control strategy is executed by a multi-loop controller with frequency deviations in all control areas used as the input signals. Validity of the proposed state-variable control has been confirmed by modal analysis and by computer simulation for a multi-machine test system.
Go to article

Abstract

An electric power steering system (EPS) is a new type of steering system developed after a mechanical hydraulic power system (MHPS) and electric-hydraulic power steering system (EHPS). In order to coordinate and solve the portability and sensitivity of the steering system optimally, taking an induction power steering system as the research object, the control algorithm of induction motor control under the EPS is studied in this paper. In order to eliminate the feed-forward performance degradation caused by the change of feed-forward parameters, an on-line identification algorithm of feed-forward parameters is proposed. It can improve the control performance of online identification among three feed-forward parameters in the T-axle motor, it improves on the robustness of feed-forward control performance, at the same time it also gives simulation and test results. This method can improve the control performance of the three feed-forward parameter online identification of the T-axis motor and improve the robustness of feed-forward control performance. At the same time, simulation and test results are given. The simulation results show that the algorithm can significantly improve the response speed and control accuracy of EPS system control.
Go to article

Abstract

High voltage direct current (HVDC) emergency control can significantly improve the transient stability of an AC/DC interconnected power grid, and is an important measure to reduce the amount of generator and load shedding when the system fails. For the AC/DC interconnected power grid, according to the location of failure, disturbances can be classified into two categories: 1) interconnected system tie-line faults, which will cause the power unbalance at both ends of the AC system, as a result of the generator rotor acceleration at the sending-end grid and the generator rotor deceleration at the receiving-end grid; 2) AC system internal faults, due to the isolation effect of the DC system, only the rotor of the generator in the disturbed area changes, which has little impact on the other end of the grid. In view of the above two different locations of disturbance, auxiliary power and frequency combination control as well as a switch strategy, are proposed in this paper. A four-machine two-area transmission system and a multi-machine AC/DC parallel transmission system were built on the PSCAD platform. The simulation results verify the effectiveness of the proposed control strategy.
Go to article

Abstract

Fast and accurate grid signal frequency estimation is a very important issue in the control of renewable energy systems. Important factors that influence the estimation accuracy include the A/D converter parameters in the inverter control system. This paper presents the influence of the number of A/D converter bits b, the phase shift of the grid signal relative to the time window, the width of the time window relative to the grid signal period (expressed as a cycle in range (CiR) parameter) and the number of N samples obtained in this window with the A/D converter on the developed estimation method results. An increase in the number b by 8 decreases the estimation error by approximately 256 times. The largest estimation error occurs when the signal module maximum is in the time window center (for small values of CiR) or when the signal value is zero in the time window center (for large values of CiR). In practical applications, the dominant component of the frequency estimation error is the error caused by the quantization noise, and its range is from approximately 8×10-10 to 6×10-4.
Go to article

Abstract

The uncontrolled power flow in the AC power system caused by renewable energy sources (restless sources, distributed energy sources), dynamic loads, etc., is one of many causes of voltage perturbation, along with others, such as switching effects, faults, and adverse weather conditions. This paper presents a three-phase voltage and power flow controller, based on direct PWM AC/AC converters. The proposed solution is intended to protect sensitive loads against voltage fluctuation and problems with power flow control in an AC power system. In comparison to other solutions, such as DVR, UPFC, the presented solution is based on bipolar matrix choppers and operates without a DC energy storage unit or DC link. The proposed solution is able to compensate 50% voltage sags, in the case of three-phase symmetrical voltage perturbation, and single phase voltage interruptions. Additionally, by means of a voltage phase control with a range of #6;60◦ in each phase, it is possible to control the power flow in an AC power system. The paper presents an operational description, a theoretical analysis based on the averaged state space method and four terminal descriptions, and the experimental test results from a 1 kVA laboratory model operating under active load.
Go to article

Abstract

The paper presents a concept of a control system for a high-frequency three-phase PWM grid-tied converter (3x400 V / 50 Hz) that performs functions of a 10-kW DC power supply with voltage range of 600÷800 V and of a reactive power compensator. Simulation tests (in PLECS) allowed proper selection of semiconductor switches between fast IGBTs and silicon carbide MOSFETs. As the main criterion minimum amount of power losses in semiconductor devices was adopted. Switching frequency of at least 40 kHz was used with the aim of minimizing size of passive filters (chokes, capacitors) both on the AC side and on the DC side. Simulation results have been confirmed in experimental studies of the PWM converter, the power factor of which (inductive and capacitive) could be regulated in range from 0.7 to 1.0 with THDi of line currents below 5% and energy efficiency of approximately 98.5%. The control system was implemented in Texas Instruments TMS320F28377S microcontroller.
Go to article

Abstract

A sliding mode controller for the photovoltaic pumping system has been proposed in this paper. This system is composed of a photovoltaic generator supplying a three-phase permanent magnet synchronous motor coupled to a centrifugal pump through a three-phase voltage inverter. The objective of this study is to minimise the number of regulators and apply the sliding mode control by exploiting the specification of the field oriented control scheme (FOC). The first regulator is used to force the photovoltaic generator to operate at the maximum power point, while the second is used to provide the field oriented control to improve the system performance.The whole system is analysed and its mathematical model is done. Matlab is used to validate the performance and robustness of the proposed control strategy.
Go to article

This page uses 'cookies'. Learn more