Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:

Abstract

High distribution system power-losses are predominantly due to lack of investments in R&D for improving the efficiency of the system and improper planning during installation. Outcomes of this are un-designed extensions of the distributing power lines, the burden on the system components like transformers and overhead (OH) lines/conductors and deficient reactive power supply leading to drop in a system voltage. Distributed generation affects the line power flow and voltage levels on the system equipment. These impacts of distributed generation (DG) may be to improve system efficiency or reduce it depending on the operating environment/conditions of the distribution system and allocation of capacitors. For this purpose, allocating of distributed generation optimally for a given radial distribution system can be useful for the system outlining and improve efficiency. In this paper, a new method is used for optimally allocating the DG units in the radial distribution system to curtail distribution system losses and improve voltage profile. Also, the variation in active power load in the system is considered for effective utilization of DG units. To evidence the effectiveness of the proposed algorithm, computer simulations are carried out in MATLAB software on the IEEE-33 bus system and Vastare practical 116 bus system.
Go to article

Abstract

The paper presents the results of simulation method for prediction of helicopter H-V zone envelope in the case of engine power loss. Depending on the loss rate of available power, the emergency maneuver for flight continuation is calculated, or the autorotation landing is predicted. The realization of an airborne device with in-built calculating procedure and graphic presentation of H-V zone predicted limits can improve safety level of helicopter flight, and can cue the pilot to make proper decision in emergency conditions. The results of emergency maneuver simulation were verified by comparing them with flight tests of Mi-2Plus helicopter for partial power unit failure, and with records of SW-4 helicopter autorotation landing. The operation of measurement-recording module, which consists of GPS receiver, inertial measurement unit and a computer of PC-104 standard, was checked during flight tests of a radio-controlled helicopter model.
Go to article

Abstract

The growth in the system load accompanied by an increase of power loss in the distribution system. Distributed generation (DG) is an important identity in the electric power sector that substantially overcomes power loss and voltage drop problems when it is coordinated with a location and size properly. In this study, the DG integration into the network is optimally distributed by considering the load conditions in different load models used to surmount the impact of load growth. There are five load models tested namely constant, residential, industrial, commercial and mixed loads. The growth of the electrical load is modeled for the base year up to the fifth year as a short-term plan. Minimization of system power loss is taken as the main objective function considering voltage limits. Determination of the location and size of DG is optimally done by using the breeder genetic algorithm (BGA). The proposed studies were applied to the IEEE 30 radial distribution system with single and multiple placement DG scenarios. The results indicated that installing an optimal location and size DG could have a strong potential to reduce power loss and to secure future energy demand of load models. Also, commercial load requires the largest DG active injection power to maintain the voltage value within tolerable limits up to five years.
Go to article

Abstract

This paper presents a novel approach for reactive power planning of a connected power network. Reactive power planning is nothing but the optimal usage of all reactive power sources i.e., transformer tap setting arrangements, reactive generations of generators and shunt VAR compensators installed at weak nodes. Shunt VAR compensator placement positions are determined by a FVSI (Fast Voltage Stability Index) method. Optimal setting of all reactive power reserves are determined by a GA (genetic algorithm) based optimization method. The effectiveness of the detection of the weak nodes by the FVSI method is validated by comparing the result with two other wellknown methods of weak node detection like Modal analysis and the L-index method. Finally, FVSI based allocation of VAR sources emerges as the most suitable method for reactive power planning.
Go to article

Abstract

To study the principle of loss and heat at the end region of large 4-poles nuclear power turbine generator, 3D transient electromagnetic field and 3D steady temperature field finite element (FE) models of the end region are established respectively. Considering the factors such as rotor motion, core non-linearity and time-varying of electromagnetic field, the anisotropic heat conductivity and different heat dissipation conditions of stator end region, a 50 Hz, 1150 MW, 4-poles nuclear power turbine generator is investigated. The loss and heat at the generator end region are calculated respectively at no-load and rated-load, and the calculation results are compared with the test data. The result shows that the calculation model is accurate and the generator design is suitable. The method is valuable for the research of loss and heat at the end region of large 4-poles nuclear power turbine generator and the improvement of the generator’s operation stability. The method has been applied successfully for the design of the larger nuclear power turbine generators.
Go to article

Abstract

An LLCL-filter is becoming more attractive than an LCL-filter as the interface between the grid-tied inverter and the grid due to possibility of reducing the copper and the magnetic materials. The efficiency of the LLCL-filter based single-phase grid-tied inverter also excites interests for many applications. The operation of the switches of the VSI is various with different modulation methods, which lead to different efficiencies for such a single-phase grid-tied inverter system, and therefore important research has been carried out on the effect of the choice of PWM schemes. Then power losses and efficiencies of the LLCL-filter and the LCL-filter based single-phase grid-tied inverters are analyzed and compared under the discontinuous unipolar, the dual-buck and the bipolar modulations. Results show that the efficiency of LLCL-filter based inverter system is higher than the LCL- filter based independent on the modulation method adopted. Experiments on a 2 kW prototype are in good agreement with results of the theoretical analysis.
Go to article

This page uses 'cookies'. Learn more