Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

Power system state estimation is a process of real-time online modeling of an electric power system. The estimation is performed with the application of a static model of the system and current measurements of electrical quantities that are encumbered with an error. Usually, a model of the estimated system is also encumbered with an uncertainty, especially power line resistances that depend on the temperature of conductors. At present, a considerable development of technologies for dynamic power line rating can be observed. Typically, devices for dynamic line rating are installed directly on the conductors and measure basic electric parameters such as the current and voltage as well as non-electric ones as the surface temperature of conductors, their expansion, stress or the conductor sag angle relative to the plumb line. The objective of this paper is to present a method for power system state estimation that uses temperature measurements of overhead line conductors as supplementary measurements that enhance the model quality and thereby the estimation accuracy. Power system state estimation is presented together with a method of using the temperature measurements of power line conductors for updating the static power system model in the state estimation process. The results obtained with that method have been analyzed based on the estimation calculations performed for an example system - with and without taking into account the conductor temperature measurements. The final part of the article includes conclusions and suggestions for the further research.
Go to article

Abstract

The paper presents optimization of power line geometrical parameters aimed to reduce the intensity of the electric field and magnetic field intensity under an overhead power line with the use of a genetic algorithm (AG) and particle swarm optimization (PSO). The variation of charge distribution along the conductors as well as the sag of the overhead line and induced currents in earth wires were taken into account. The conductor sag was approximated by a chain curve. The charge simulation method (CSM) and the method of images were used in the simulations of an electric field, while a magnetic field were calculated using the Biot–Savart law. Sample calculations in a three-dimensional system were made for a 220 kV single – circuit power line. A comparison of the used optimization algorithms was made.
Go to article

This page uses 'cookies'. Learn more