Search results

Filters

  • Journals
  • Date

Search results

Number of results: 6
items per page: 25 50 75
Sort by:

Abstract

In order to analyze the cumulative exergy consumption of an integrated oxy-fuel combustion power plant the method of balance equations was applied based on the principle that the cumulative exergy consumption charging the products of this process equals the sum of cumulative exergy consumption charging the substrates. The set of balance equations of the cumulative exergy consumption bases on the ‘input-output method’ of the direct energy consumption. In the structure of the balance we distinguished main products (e.g. electricity), by-products (e.g. nitrogen) and external supplies (fuels). In the balance model of cumulative exergy consumption it has been assumed that the cumulative exergy consumption charging the supplies from outside is a quantity known a priori resulting from the analysis of cumulative exergy consumption concerning the economy of the whole country. The byproducts are charged by the cumulative exergy consumption resulting from the principle of a replaced process. The cumulative exergy consumption of the main products is the final quantity.
Go to article

Abstract

Analysis of power consumption presents a very important issue for power distribution system operators. Some power system processes such as planning, demand forecasting, development, etc.., require a complete understanding of behaviour of power consumption for observed area, which requires appropriate techniques for analysis of available data. In this paper, two different time-frequency techniques are applied for analysis of hourly values of active and reactive power consumption from one real power distribution transformer substation in urban part of Sarajevo city. Using the continuous wavelet transform (CWT) with wavelet power spectrum and global wavelet spectrum some properties of analysed time series are determined. Then, empirical mode decomposition (EMD) and Hilbert-Huang Transform (HHT) are applied for the analyses of the same time series and the results showed that both applied approaches can provide very useful information about the behaviour of power consumption for observed time interval and different period (frequency) bands. Also it can be noticed that the results obtained by global wavelet spectrum and marginal Hilbert spectrum are very similar, thus confirming that both approaches could be used for identification of main properties of active and reactive power consumption time series.
Go to article

Abstract

A comparative analysis concerning the influence of different factors on momentum transfer in mechanically agitated systems was carried out on the basis of experimental results for solid-liquid, gas-liquid and gas-solid-liquid systems. The effects of the impeller - baffles system geometry, scale of the agitated vessel, type and number of impellers and their off-bottom clearance, as well as physical properties of the multiphase systems on the critical impeller speeds needed to produce suspension or dispersion, power consumption and gas hold-up were analysed and evaluated.
Go to article

Abstract

The aim of the research presented in this paper was determination of power consumption and gas hold-up in mechanically agitated aerated aqueous low concentration sucrose solutions. Experimental studies were conducted in a vessel of diameter 0.634 m equipped with high-speed impellers (Rushton turbine, Smith turbine or A 315). The following operating parameters were changed: volumetric gas flow rate (expressed by superficial gas velocity), impeller speed, sucrose concentration and type of impeller. Based on the experiments results, impellers with a modified shape of blades, e.g. CD 6 or A 315, could be recommended for such gas-liquid systems. Power consumption was measured using strain gauge method. The results of gas holdup measurements have been approximated by an empirical relationship containing dimensionless numbers (Eq. (2)).
Go to article

Abstract

The article presents the results of selected energy parameters calculations, carried out for the recorded values of instantaneous voltages and currents in the three-phase power supply of the model vibratory unit. The parameters were the values of active and apparent power taken from the drive consisting of two electric motors supplied by the inverter for selected frequency settings and directly from the power grid. In addition, calculations of tgφ power factor values were made to evaluate the compensation of reactive power consumption in the tested power systems. Measurements and calculations lead to the conclusion that if the frequency of the inverter output voltage rises, the active and apparent power consumed by the model vibratory drive unit increases. The active and apparent power for setting the output frequency of the inverter from 50 Hz was less than the active and apparent power taken by the model vibratory unit that was powered directly from the power grid. The power factor tgφ in the power supply system was approximately 6, except one case (f = 30 Hz).
Go to article

Abstract

Higher active power of a submerged arc furnace is commonly believed to increase its capacity in the process of ferrosilicon smelting. This is a true statement but only to a limited extent. For a given electrode diameter d, there is a certain limit value of the submerged arc furnace active power. When this value is exceeded, the furnace capacity in the process of ferrosilicon smelting does not increase but the energy loss is higher and the technical and economic indicators become worse. Maximum output regarding the reaction zone volumes is one of parameters that characterize similarities of furnaces with various geometrical parameters. It is proportional to d3 and does not depend on the furnace size. The results of statistical analysis of the ferrosilicon smelting process in the 20 MVA furnace have been presented. In addition to basic electrical parameters, such as active power and electrical load of the electrodes, factors contributing to higher resistance of the furnace bath and resulting lower reactive power Px demonstrate the most significant effect on the electrothermal process of ferrosilicon smelting. These parameters reflect metallurgical conditions of ferrosilicon smelting, such as the reducer fraction, position of the electrodes and temperature conditions of the reaction zones.
Go to article

This page uses 'cookies'. Learn more