Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

The key feature of thermosensitive polymers is the reversible transition between the hydrophilic and hydrophopic forms depending on the temperature. Although the main research efforts are focused on their application in different kinds of drug delivery systems, this phenomenon also allows one to precisely control the stability of solid-liquid dispersions. In this paper research on the application of poly(N-isopropylacrylamide) copolymers in processing of minerals is presented. In the experiments tailings from flotation plant of one of the coal mines of Jastrzębska Spółka Węglowa S.A. (Poland) were used. A laser particle sizer Fritsch Analysette 22 was used in order to determine the Particle Size Distribution (PSD). It was proved that there are some substantial issues associated with the application of thermosensitive polymers in industrial practice which may exclude them from the common application. High salinity of suspension altered the value of Lower Critical Solution Temperature (LCST). Moreover, the co-polymers used in research proved to be efficient flocculating agents without any temperature rise. Finally, the dosage needed to achieve steric stabilization of suspension was greatly beyond economic justification.
Go to article

Abstract

Powdered polyaniline (PANI) was synthesised chemically with different doping anions namely hydrochloric acid, sulphuric acid and para-toluenesulfonic acid (pTSA). Two-step synthetic procedure was utilised at low temperature. The highest reaction efficiency was found for chlorine-doped PANI. Structural characterization with FTIR revealed the vibration bands characteristic to formation of the emeraldine salt. The surface morphology of doped PANIs was studied by SEM images which showed near globular shape and porous structures with different size of the aggregated particles. They were smaller for Cl–- or pTS–-doped PANI while for SO42– the size was markedly larger. The XRD patterns revealed that there are ordered regions especially for pTS– doped PANI, while the highest conductivity value was recorded for Cl– doped one followed by organic pTS– doped and SO42– doped one.
Go to article

Abstract

The paper presents results of the field tests on membrane biogas enrichment performed with the application of mobile membrane installation (MMI) with the feed stream up to 10 Nm3/h. The mobile installation equipped with four hollow fibre modules with polyimide type membranes was tested at four different biogas plants. Two of them were using agricultural substrates. The third one was constructed at a municipal wastewater plant and sludge was fermented in a digester and finally in the fourth case biogas was extracted from municipal waste landfill site. Differences in the concentration of bio-methane in feed in all cases were observed and trace compounds were detected as well. High selectivity polyimide membranes, in proper module arrangements, can provide a product of high methane content in all cases. The content of other trace compounds, such as hydrogen sulphide, water vapour and oxygen on the product did not exceed the values stated by standard for a biogas as a vehicle fuel. The traces of hydrogen sulphide and water vapour penetrated faster to the waste stream enriched in carbon dioxide, which could lead to further purification of the product – methane being hold in the retentate (H2O > H2S > CO2 > O2 > CH4 > N2). In the investigated cases, when concentration of N2 was low and concentration of CH4 higher than 50%, it was possible to upgrade methane to concentration above 90% in a two-stage cascade. To performsimulation ofCH4 andCO2 permeation through polyimide membrane,MATLABwas used. Simulation program has included permeation gaseous mixture with methane contents as observed at field tests in the range of 50 and 60% vol. The mass transport process was estimated for a concurrent hollow fibre membrane module for given pressure and temperature conditions and different values of stage cut. The obtained results show good agreement with the experimental data. The highest degree of methane recovery was obtained with gas concentrating in a cascade with recycling of the retentate.
Go to article

Abstract

The presented article is a report on progress in photovoltaic devices and material processing. A cadmium telluride solar cell as one of the most attractive option for thin-film polycrystalline cell constructions is presented. All typical manufacturing steps of this device, including recrystalisation and junction activation are explained. A new potential field of application for this kind of device - the BIPV (Building Integrated Photovoltaic) is named and discussed. All possible configuration options for this application, according to material properties and exploitation demands are considered. The experimental part of the presented paper is focused on practical implementation of the high- temperature polymer foil as the substrate of the newly designed device by the help of ICSVT (Isothermal Close Space Vapour Transport) technique. The evaluation of the polyester and polyamide foils according to the ICSVT/CSS manufacturing process parameters is described and discussed. A final conclusion on practical verification of these materials is also given.
Go to article

This page uses 'cookies'. Learn more